期刊文献+

基于自适应权重和柯西变异的鲸鱼优化算法 被引量:75

Whaleoptimization Algorithm Based on Adaptive Weight and Cauchy Mutation
下载PDF
导出
摘要 为了改进鲸鱼算法(WOA)容易陷入局部最优和收敛精度低的问题,提出了基于自适应权重和柯西变异的鲸鱼算法(WOAWC).首先通过柯西逆累积分布函数方法对鲸鱼位置进行变异,提高了鲸鱼算法的全局搜索能力,避免了陷入局部最优.另外通过自适应权重的方法改进了鲸鱼算法的局部搜索能力,提高了收敛精度;实验结果表明,改进的算法和原鲸鱼算法、遗传算法、粒子群算法相比,收敛精度和算法稳定性上都要优于其它算法. In order to improve the problem that the whale algorithm (WOA) is easy to fall into the local optimum and the convergence accuracy is low, a whale algorithm based on adaptive weight and Cauehy mutation is proposed (WOAWC). Firstly, the variation of the whale's position is modified by the Cauchy inverse cumulative distribution function method, which improves the global search ability of the whale algorithm and avoids the local optimization. In addition, the local search ability of the whale algorithm is improved by the adaptive weighting method, and the convergence accuracy is improved. The experimental results show that the improved algorithm is superior to the original whale algorithm, genetic algorithm and particle swarm optimization, Convergence accuracy and algorithm stability are better than other algorithms.
出处 《微电子学与计算机》 CSCD 北大核心 2017年第9期20-25,共6页 Microelectronics & Computer
关键词 鲸鱼算法 自适应权重 柯西变异 遗传算法 粒子群算法 whale algorithm adaptive weight cauchy mutation genetic algorithms particle swarm optimization
  • 相关文献

参考文献5

二级参考文献32

  • 1刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 2张梅凤,邵诚,甘勇,李梅娟.基于变异算子与模拟退火混合的人工鱼群优化算法[J].电子学报,2006,34(8):1381-1385. 被引量:82
  • 3韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 4胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 5Kennedy J, Eberhart R. Particle swarm optimization [C]. IEEE Int Conf on Neural Networks. Piscataway: IEEE Service Center, 1995: 1942-1948.
  • 6Shi Y, Eberhart R. A modified particle swarm optimizer [C]. IEEE World Conf on Computational Intelligence. Piscataway: IEEE Press,1998: 69-73.
  • 7Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [C]. Proc of the IEEE Conf on Evolutionary Computation. Piscataway: IEEE Press, 2001 : 101-106.
  • 8Zhang L P, Yu H J, Hu S X. A new approach to improve particle swarm optimization[C]. Lecture Notes in Computer Science. Chicago: Springer-Verlag, 2003: 134-139.
  • 9Krink T, Vesterstroem J S, Riget J. Particle swarm optimization with spatial particle extension[C]. Proe of the IEEE Conf on Evolutionary Computation. Honolulu: IEEE Inc, 2002: 1474-1479.
  • 10Clerc M. The swarm and queen.. Towards deterministic and adaptive particle swarm optimization [C]. Proc of IEEE Conf on Evolutionary Computation. Washington D C, 1999: 1951-1957.

共引文献250

同被引文献471

引证文献75

二级引证文献603

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部