期刊文献+

基于低秩特征脸与协同表示的人脸识别算法 被引量:2

Face recognition algorithm based on low-rank eigenface and collaborative representation
下载PDF
导出
摘要 在人脸识别中,人脸图像往往受到表情、光照、遮挡、姿态变化的影响,对此本文提出一种基于低秩特征脸与协同表示的人脸识别算法。该算法先用低秩矩阵恢复算法分解出训练样本图像的误差图像,再分别对训练样本与误差图像提取特征构造特征字典,计算测试样本图像特征字典下的协同表示系数,最后通过重构误差进行分类。通过AR和ORL人脸库进行实验,结果表明,本文提出的人脸识别算法的识别率、识别速率得到有效提高。 For face recognition,the face image tend to get variations of expression,lighting,occlusion and pose.In the paper,we propose a face recognition algorithm based on low-rank eigenface and collaborative representation.In the algorithm,we firstly obtain the error images of the training images using the low-rank matrix recovery algorithm.Then,we calculate the feature vectors of the training images and the corresponding error images to constitute a feature dictionary respectively,and calculate collaborative representation of test image with feature dictionary.Finally,the test image was classified by the reconstruction error.Experimental results on AR and ORL databases show that the proposed face image recognition algorithm has a higher recognition rate and fast.
出处 《液晶与显示》 CAS CSCD 北大核心 2017年第8期650-655,共6页 Chinese Journal of Liquid Crystals and Displays
关键词 人脸识别 低秩矩阵 特征脸 协同表示 face recognition low-rank matrix eigenface collaborative representation
  • 相关文献

参考文献6

二级参考文献79

  • 1张先武,郭雷.基于子模式双向二维主成分分析的人脸识别[J].光电子.激光,2009,20(11):1498-1502. 被引量:6
  • 2周大可,杨新,彭宁嵩.改进的线性判别分析算法及其在人脸识别中的应用[J].上海交通大学学报,2005,39(4):527-530. 被引量:12
  • 3延伟东,彭国华.基于分块FLD的图像特征提取方法[J].科学技术与工程,2006,6(19):3107-3110. 被引量:2
  • 4Han Ke Zhu Xiuchang.RESEARCH ON TWO-DIMENSIONAL LDA FOR FACE RECOGNITION[J].Journal of Electronics(China),2006,23(6):943-947. 被引量:2
  • 5王文豪,严云洋.基于图像分块的LDA人脸识别[J].计算机工程与设计,2007,28(12):2889-2891. 被引量:6
  • 6D Nister, et al. Sealable recognition with a vocabulary tree [ A]. Proceeding of IEEE Conference on Computer Vision and Pattern Recognition [ C ]. USA: IEEE Press, 2006. 2161 - 2168.
  • 7S Lazebnik, C Schmid, J Ponce. Beyond bag of features: spatial pyramid matching for recognizing natural scene categories [ A]. Proceeding of IEEE Conference on Computer Vision and Pattern Recognition [ C]. USA: IEEE Press,2006.2169 - 2178.
  • 8M Varma, D Ray. I.gaming the discriminative power- invari- ance trade-off[ A ]. Proceeding of International Conference on Computer Vision [ C]. USA: IEEE Press,2007.1 - 8. object categories [ OL ]. http://www, vision, caltech, edu/feifeili/ Data sets. han,2003.9.
  • 9H Lee,A Battle,R Raina,A Y Ng. Efficient sparse coding al- gorithms [ A ]. Proceeding of Advances in Neural Information Processing System[C]. Canada:NIPS Press,2007. 801 - 808.
  • 10J Yang, K Yu, Y Gong, T Huang. Linear spatial pyramid matching using sparse coding for image classification [ A ]. Proceeding of IEEE Conference on Computer Vision and Pat- tern Recognition [ C]. USA: IEEE Press,2009. 1794 - 1801.

共引文献126

同被引文献8

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部