期刊文献+

面向点云的三维物体识别方法综述 被引量:21

Survey of 3D Object Recognition for Point Clouds
下载PDF
导出
摘要 随着三维扫描技术的快速发展,获取各类场景的点云数据已经非常简单快捷;加之点云数据具备不受光照、阴影、纹理的影响等优势,基于点云的三维物体识别已成为计算机视觉领域的研究热点。首先,对近年来面向点云数据的三维物体识别方法进行归纳和总结;然后,对已有方法的优势及缺点进行分析;最后,指出点云物体识别中所面临的挑战及进一步的研究方向。 With the rapid development of 3D scanning technology, it is convenient to obtain point clouds of different scenes. Since point clouds are not influenced by light, shadows and textures, recognizing 3D object from scene point clouds has become a research hotspot of computer vision. This paper first summarized the 3D object recognition methods from point clouds in recent years. Then the advantages and disadvantages of the existing methods were discussed. Final- ly, the challenges and further research directions of object recognition were pointed out.
出处 《计算机科学》 CSCD 北大核心 2017年第9期11-16,共6页 Computer Science
基金 国家自然科学基金(61602373 61472319 61401355) 西安市碑林区科技项目(GX1615) 陕西省自然基金(2015JZ015)资助
关键词 点云数据 三维物体识别 特征提取 图匹配 Point clouds,3D object recognition,Feature extraction,Graph matching
  • 相关文献

参考文献5

二级参考文献54

  • 1余德军,龚俊斌,马杰,田金文.激光成像雷达成像仿真技术研究[J].红外与激光工程,2006,35(z4):160-166. 被引量:15
  • 2Sande K E A, Gevers T, Snoek C G M. Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1582-1596.
  • 3Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645.
  • 4Vernaza P, Lee D D. Scalable real-time object recognition and segmentation via cascaded, discriminative Markov random fields. In: Proceedings of the IEEE International Conference on Robotics and Automation. Anchorage, USA: IEEE, 2010. 3102-3107.
  • 5Himmelsbach M, Luettel T, Wuensche H J. Real-time object classification in 3D point clouds using point feature histograms. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, USA: IEEE, 2009. 994-1000.
  • 6Anguelov D, Taskarf B, Chatalbashev V, Koller D, Gupta D, Heitz G, Ng A. Discriminative learning of Markov random fields for segmentation of 3D scan data. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2005. 169-176.
  • 7Agrawal A, Nakazawa A, Takemura H. MMM-classification of 3D range data. In: Proceedings of the IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009. 2003-2008.
  • 8Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2001. 511-518.
  • 9Torralba A, Murphy K P, Freeman W T. Sharing visual features for multiclass and multiview object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 854-869.
  • 10Nüchter A, Hertzberg J. Towards semantic maps for mobile robots. Robotics and Autonomous Systems, 2008, 56(11): 915-926.

共引文献86

同被引文献118

引证文献21

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部