期刊文献+

基于机器学习的用户窃电行为预测 被引量:9

Prediction of User Stealing Behavior Based on Machine Learning
下载PDF
导出
摘要 新型智能电表普及后,为了准确检测出电网中的窃电用户,可以结合机器学习的方法.为此,选择了支持向量机、随机森林和迭代决策树3种机器学习中较常用的大数据算法进行分析,通过不断调整试验数据集的大小,对3种算法的效率和准确率进行测试.对比分析结果发现,随机森林算法运行的时间和数据量的大小基本呈线性关系,效率较高,且准确率稳定在86%以上,表现较好. Accurate detection of the power grid users can be combined with the machine learning method after the popularity of new smart meters. For this purpose, three kinds of machine learning more commonly used in large data algorithm are chosen for analysis:random forest, support vector machine and gradient boosting decision tree. The efficiency and accuracy of the three algorithms are tested by constantly adjusting the size of the test data set. Analysis of the results shows that the ran- dom forest algorithm runs in a linear relationship with the amount of time and the amount of data, while the accuracy rate of stability is higher than 86% ,with better performances.
出处 《上海电力学院学报》 CAS 2017年第4期389-393,共5页 Journal of Shanghai University of Electric Power
基金 国家自然科学基金(61403247) 上海市信息安全综合管理技术研究重点实验室开放课题项目(AGK2015 005) 上海市科学技术委员会地方能力建设项目(15110500700)
关键词 窃电 智能电表 随机森林 支持向量机 迭代决策树 stealing electricity smart meter random forest support vector machine gradient boosting decision tree
  • 相关文献

参考文献7

二级参考文献37

  • 1Archer KJ, Kirnes RV, 2008. Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. ,52(4):2249-2260.
  • 2Biau G, 2012. Analysis of a random forests model. J. Mach. Learn. Res. , 13: 1063 -1095.
  • 3Breiman L, 2001a. Random forests. Mach. Learn. , 45:5 - 32.
  • 4Breiman L, 2001b. Statistical modeling: The two cultures. Stat. Sci., 16:199-215.
  • 5Breiman L, Friedman JH, O lshen RA, Stone CJ, 1984.Classification and Regression Trees. Chapman and Hall. 1 -359.
  • 6Cutler DR, Edwards TC, Jr., Beard KH, Cutler A, Hess KT, 2007. Random forests for classification in ecology. Ecology, 88 (11) :2783 - 2792.
  • 7Deng H, Runger G, Tuv E, 2011. Bias of importance measures for multi-valued attributes and solutionsl I Proceedings of the 21 st International Conference on Artificial Neural Networks (ICANN).
  • 8Elith J, Graham CH, 2009. Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32 ( 1 ) : 66 - 77 .
  • 9Genuer R, Poggi JM, Tuleau-Malot C, 2010. Variable selection using random forests. Pattern Recogn. Lett., 31 (14) :2225 - 2236.
  • 10Groemping U, 2009. Variable importance assessment in regression.: linear regression versus random forest. Am. Stat. , 63(4) :308 -319.

共引文献394

同被引文献83

引证文献9

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部