期刊文献+

结构方程模型在科技期刊量化指标研究中的应用 被引量:15

Applications of structural equation model in science and technology journal quantitative indicators research
下载PDF
导出
摘要 期刊量化评价指标现有20多项,新的量化指标还在不断涌现。因此,研究各项评价指标的特点、规律、相关关系以及对各指标间的结构进行分类和探讨尤为重要。结构方程模型利用不同统计方法对大样本进行结构关系分析,不仅具有先验性,还可以同时检验测量变量和潜在变量。介绍了结构方程模型的原理、应用及其专用软件AMOS,详细描述了其在期刊量化指标应用中的研究进展,分析了相关研究的优缺点,对文章的样本量、拟合指标数据、AMOS软件操作等注意事项进行了分析和探讨。研究表明,结构方程模型方法在期刊量化指标结构关系中研究具有重要的实践意义,但需进一步拓展研究深度和广度,重视并完善方法应用的规范性。 There are more than 20 quantitative evaluation indexes,and new indicators are coming forth.It's particularly important to study the characteristics,regularity,correlation of each evaluation index,and classify structure between the various indicators of and discussion. SEM uses different statistical methods for large sample analysis of structural relationships,has the apriority,also can test measured variables and the potential at the same time. This paper introduces the principle and application of SEM and its special software AMOS,describes in detail its periodical research progress in the quantitative indicators application,analyzes the advantages and disadvantages of the related studies,analyzes and discusses the sample size,fitting index data,AMOS software operation and other attentions. Studies show SEM method has important practical significance in journal quantitative index structure research,but SEM needs to expand the research depth and breadth,and improve the method of normative.
作者 温学兵 刘洋 WEN Xuebing LIU Yang(The journal of Editorial Office, Shenyang Normal University, Shenyang 110034, China College of Mathematics and Systems Science, Shenyang Normal University, Shenyang 110034, China)
出处 《沈阳师范大学学报(自然科学版)》 CAS 2017年第3期319-325,共7页 Journal of Shenyang Normal University:Natural Science Edition
基金 辽宁省教育厅科学研究一般项目(W2016014)
关键词 期刊评价指标 结构方程模型 测量模型 验证性因子分析 journals evaluating indices structural equation model measurement model confirmatory factor analysis
  • 相关文献

参考文献8

二级参考文献88

共引文献240

同被引文献115

引证文献15

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部