期刊文献+

Effect of Nano-sized B4C Addition on the Mechanical Properties of ZA27 Composites

Effect of Nano-sized B_4C Addition on the Mechanical Properties of ZA27 Composites
原文传递
导出
摘要 In order to understand the influence of nano-sized B4C additive on ZA27 alloy, mechanical and physical properties of ZA27-B4C nanocomposites were investigated in terms of B4C content. While physical properties were determined in terms of microstructural studies, density and porosity tests, mechanical properties were determined in terms of ultimate tensile strength(UTS) and hardness experiments. Morphological and microstructural studies were carried out with scanning electron microscopy(SEM). The experimental results indicate that nano-sized B4C can be used to enhance the mechanical properties of ZA27 alloy effectively. The highest mechanical performance can be obtained at ZA27-0.5% B4C(in weight) nanocomposite with values of tensile strength(247 MPa) and hardness(141,18 BH) and low partial porosity(0.5%). After a pick point, increasing B4C ratio may cause the formation of agglomeration in grain boundaries, that's why density, tensile strength, and hardness values are declined. In order to understand the influence of nano-sized B4C additive on ZA27 alloy, mechanical and physical properties of ZA27-B4C nanocomposites were investigated in terms of B4C content. While physical properties were determined in terms of microstructural studies, density and porosity tests, mechanical properties were determined in terms of ultimate tensile strength(UTS) and hardness experiments. Morphological and microstructural studies were carried out with scanning electron microscopy(SEM). The experimental results indicate that nano-sized B4C can be used to enhance the mechanical properties of ZA27 alloy effectively. The highest mechanical performance can be obtained at ZA27-0.5% B4C(in weight) nanocomposite with values of tensile strength(247 MPa) and hardness(141,18 BH) and low partial porosity(0.5%). After a pick point, increasing B4C ratio may cause the formation of agglomeration in grain boundaries, that's why density, tensile strength, and hardness values are declined.
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期747-752,共6页 武汉理工大学学报(材料科学英文版)
基金 Funded by the Research Projects Unit of Karadeniz Technical(Number:12040) TUBITAK(Number:213M276)
关键词 metal matrix nanocomposite ZA27 alloy hot pressing powder metallurgy metal matrix nanocomposite ZA27 alloy hot pressing powder metallurgy

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部