期刊文献+

入口非均匀流对核主泵性能影响研究 被引量:6

Research on effects of non-uniform suction flow on performance in reactor coolant pump
下载PDF
导出
摘要 CAP1400反应堆冷却剂系统中蒸汽发生器下封头和核主泵直接连接,使蒸汽发生器下封头出口接管的流场变得不均匀.为探究非均匀入流条件对核主泵性能的影响,对核主泵叶轮和蒸汽发生器下封头进行联合简化建模,采用CFD方法数值计算泵的能量、水动力以及空化性能,并与均匀入流下的仿真结果进行比较.计算结果表明:在0.7Q_0~1.2Q_0工况范围内,进口的不均匀流动导致泵的扬程下降1.8%~5.1%,叶轮扭矩下降1.9%~6.4%,而效率没有发生明显的变化;非均匀入流下扬程的降低使叶轮所受轴向力有所减小,但径向力显著增大.空化发生时,泵的临界空化余量增大,抗空化性能降低,空化区域出现明显的不对称. Reactor coolant pump (RCP) of CAP1400 reactor coolant system is designed welded directly to the steam generator (SG) channei head, which makes the flow field in the SG channei headoutlet nozzle non-uniform. To study the influence of inflow distortion on RCP performances,comparisons of energy, hydrodynamics and cavitation characteristics between non-uniform and uniform inflow conditions are carried out by CFD method through modelling ihead of SG and RCP impellers. Calculation results show that at 0. 7Q0-1. 2Q0 the inflow distortion reduces pump head and impeller torque by 1. 8 %-5. 1 % and 1. 9 %-6. 4 % respectively, and efficiency is not affected. With the decrease of head, axial loading drops slightly whereas radial loading increases significantly under non-uniform suction flow. As cavitation occurs, the critical NPSH of the pump increases, anti-cavitation performance is reduced and cavitation area appears obvious asymmetric.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2017年第5期453-458,共6页 Journal of Dalian University of Technology
基金 "九七三"国家重点研究发展计划资助项目(2015CB057301)
关键词 核主泵 非均匀入流 能量特性 径向力 空化性能 reactor coolant pump non-uniform suction flow energy characteristic radial loading cavitation characteristic
  • 相关文献

参考文献3

二级参考文献18

  • 1聂建虎.三维复杂区域内湍流流动的试验研究及数值研究.西安交通大学博士论文[M].,2001.16-45.
  • 2王福军,张玲,张志民.轴流泵不稳定流场的压力脉动特性研究[J].水利学报,2007,38(8):1003-1009. 被引量:139
  • 3Ding H, Visser F C, Jiang Y, et al. Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications[C].ASME Fluids Engineering Division Summer Meeting, 2009, Vail, Colorado, USA.
  • 4Jiang Y, Zhang D, Furmanczyk M, et al. A three dimensional design tool for crescent oil pumps[C]. SAEWorld Congress, 2008, Detroit, Michigan, USA.
  • 5Singhal A K, Athavale M M, Li H Y, et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, ! 24:617-624.
  • 6Launder B E, Spalding D B. The numerical computation of turbulentflows[J]. Computer Methods, Applied Mechanics and Engineering, 1974, 3:269-289.
  • 7Del Valle J, Braisted D M,Brennen C E. The effects of inlet flow modification on cavitating inducer performance [ J]. Journal of Turbomachinery, 1992, 114(2) :360 - 365.
  • 8Van Esch B P M. Performance and radial loading of a mixed-flow pump under non-uniform suction flow [ J 1. Journal of Fluids Engineering, 2009, 131 (5) : 0511011 -0511017.
  • 9Bardina J E, Huang P G, Coakley T J. Turbulence modeling validation, testing, and development [ R ]. Washington : NASA Technical Memorandum, 1997.
  • 10Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications [ J]. AIAA Journal, 1994,32(8) : 1598 - 1605.

共引文献33

同被引文献123

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部