期刊文献+

基于光流关键点多尺度轨迹的人体动作识别 被引量:6

Human action recognition using multi-frequency analysis of critical point trajectories
下载PDF
导出
摘要 为减少传统行为识别方法中光流场特征提取的计算量,提取光流区域的关键点,分析关键点的频率域多尺度轨迹,与运动方向以及形状信息进行融合,得到关键点特征;为凸显与重要运动部分相关的局部特征能够产生更加有区分度的行为表示,提出一个运动部分规则框架识别每个运动部分的动作,将已得运动部分组合成每一个行为样本的区分度输入分类器进行人体行为识别。将实验结果与其它算法进行比较,验证了该算法具有更好的识别率和实时性。 To reduce the computation of the feature extraction of the optical flow field in the traditional action recognition, criti-cal points of motion flow field were extracted, and multi-scale trajectories were generated from those points and characterized in the frequency domain. A sequence was described by fusing this frequency information with motion orientation and shape informa-tion. To highlight the local features which were associated with important motion parts led to a more discriminative action repre-sentation ,a motion part regularization framework was introduced to recognize the motion part, and the learned motion part weights were further utilized to form a discriminative weighted vector representation for each action sample for final classifica-tion. Compared with other algorithms? the results show that the algorithm has better recognition and real-time performance.
出处 《计算机工程与设计》 北大核心 2017年第9期2546-2550,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(50808025) 中山市科研计划基金项目(2014A2FC388)
关键词 光流关键点 多尺度轨迹 运动部分识别 局部特征 人体动作识别 critical points of flow field multi-frequency trajectory motion parts regularization local features human action recognition
  • 相关文献

参考文献7

二级参考文献87

  • 1Laptev I. On space-time interest points[ J]. International Journal of Computer Vision, 2005,64(2-3 ) : 107-123.
  • 2DoLlar P, Rabaud V, Cottrcll G, et al. Behavior recognition via sparse spatio-temporal features[ C ]. Proceedings of IEEE International Workshop on VSPETS, 2005:65-72.
  • 3Niebles J, Wang H, Li F. Unsupervised learning of human action categories using spatial-temporal Words [ J ]. International Journal of Computer Vision, 2008,79 (3) : 299-318.
  • 4Laptev I, Marszalek M, Schmid C, et al. I..caming realistic human actions from movies[ C]. Proceedings of the Conference on Computer Vision and Pattern Recognition, Los Alamitos, California, 2008:1-8.
  • 5Schuldt C, l.,aptev I, Caputo B. Recognizing human actions: a local SVM approach [ C ]. Proceedings of the International Conference on Patuml Recognition, Los Alan~tos, C.alifomia, 2004:32-36.
  • 6Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories [ C ]. Proceedings of the Conference on Computer Vision and Pattern Recognition, Los Alamitos, California, 2006:2169-2178.
  • 7Choi J J, Jeon W, Lee S. Spatio-temporal pyramid matching for sports videos[ C ]. Proceedings of the ACM International Conference on Multimedia Information Retrieval, New York, 2008:291-297.
  • 8Wong S, Kim T, CipoUa R. Learning motion categories using both somantics and structural information[ C]. Proceedings of the Conference on Computer Vision and Pattern Recognition, Los Alamitos, California, 2007 : 1-6.
  • 9Liu J, Shah M. Learning human actions via information maximization[C]. Proceedings of the Conference on Computer Vision and Pattern Recognition, Los Alamitos, California, 2008 : 1-8.
  • 10Liu Jr Yang Y, Shah M. Learning semantic visual vocabularies using diffusion distance [ C ]. Proceedings of the Conference on Computer Vision and Pattern Recognition, Los Alamitos, California, 2009:461-468.

共引文献48

同被引文献71

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部