期刊文献+

图像压缩感知中自适应二维投影梯度重构算法

Adaptive Two-Dimensional Projected Gradient Algorithm for Compressed Image Sensing
下载PDF
导出
摘要 二维图像的压缩感知及重构大多利用一维信号压缩感知及重构方法实现,导致图像重构效率较低,重构算法复杂度高等缺点。二维随机投影及二维投影梯度重构算法有效地解决了这一问题。但在二维投影梯度重构算法中,不同图像不同采样率的重构中采用相同滤波阈值参数η的方案会降低图像重构质量。本文结合二维图像信号的纹理特性,提出了自适应二维投影梯度重构算法,该算法提出了一种双变量收缩阈值参数η在迭代重构过程中基于图像纹理信息的自适应计算公式。实验结果表明,自适应二维投影梯度重构算法比二维投影梯度重构算法在重构质量和视觉效果上都有所提升。 Most of existing two-dimensional compressed sensing and reconstruction methods for images are complemented by utilizing one-dimensional signals compressed sensing and reconstruction algorithms, which is inefficient and increases memory requirements. Two-dimensional random projection theory and two-dimensional projected gradient algorithm can overcome these disadvantages. However, fixed thresh- old parameter used in two-dimensional projected gradient algorithm for different images at different sam- pling rate may lead to poor reconstruction quality. Here, we propose an adaptive two-dimensional projec ted gradient algorithm based on image texture property. The parameter r/of bivariate shrinkage is calcu- lated according to image texture information during the iterative reconstruction process. Experimental re- sults show that compared with two-dimensional projected gradient algorithm, the proposed adaptive two- dimension projected gradient algorithm provides superior performance on both the image reconstruction quality and visual effect.
出处 《数据采集与处理》 CSCD 北大核心 2017年第4期754-761,共8页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61471173)资助项目 广东省自然科学基金(2016A030313455)资助项目
关键词 二维随机投影 纹理特性 双变量收缩 自适应 two-dimensional random projection texture property bivariate shrinkage self-adaptation
  • 相关文献

参考文献4

二级参考文献105

  • 1ZHANG Chunmei,YIN Zhongke,CHEN Xiangdong,XIAO Mingxia.Signal overcomplete representation and sparse decomposition based on redundant dictionaries[J].Chinese Science Bulletin,2005,50(23):2672-2677. 被引量:14
  • 2Candes E,Romberg J,Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete fre- quency information. IEEE Trans Inform Theory,2006,52: 489-509.
  • 3Candes E,Tao T. Near optimal signal recovery from random projections: universal encoding strategies. IEEE Trans Inform Theory,2006,52: 5406-5425.
  • 4Donoho D. Compressed sensing. IEEE Trans Inform Theory,2006,52: 1289-1306.
  • 5Candes E,Tao T. Decoding by linear programming. IEEE Trans Inform Theory,2005,51: 4203-4215.
  • 6Tropp J,Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inform Theory,2007,53: 4655-4666.
  • 7Pope G. Compressive sensing: a summary of reconstruction algorithms. Master thesis. Zrich: Eidgenssische Technische Hochschule. 2009.
  • 8Rivenson Y,Stern A. Compressed imaging with a separable sensing operator. IEEE Signal Process Lett,2009,16: 449-452.
  • 9Ghaffari A,Babaie-Zadeh M,Jutten C. Sparse decomposition of two dimensional signals. In: IEEE International Conference on Acoustics,Speech and Signal Processing,ICASSP,Taipei,2009. 3157-3160.
  • 10Liu Y,Wu M Y,Wu S J. Fast OMP algorithm for 2D angle estimation in MIMO radar. IET Electronics Lett,2010,46: 444-445.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部