期刊文献+

基于深度学习的无线传感器网络数据融合算法 被引量:13

The wireless sensor network data fusion algorithm based on depth of learning
原文传递
导出
摘要 数据融合算法能够实现对海量数据的整合和特征提取,以便形成更为清晰、可靠的数据,满足不同用户需求,但传统基于BP神经网络的数据融合算存在局部最优及泛化能力差的问题,本文引入了一种无监督学习技术自动编码器,并将其与分簇协议相结合衍生出了新型数据融合算法SAEMAD,最终经过实验对比,在同等条件下,该算法较BPNDA算法具有更好的数据特征提取优势。 data fusion algorithm can realize the integration and feature extraction of the huge data, so as to form a more clear and reliable data, to meet different user requirements, but the traditional data fusion algorithm based on the BP neural network has the problems of local optimum and poor generalization ability, this article introduces a kind of unsupervised learning technology automatic encoder, and combines with clustering protocol to derive an new algorithm ,finally through experiment contrast, under the same condition, the algorithm has better data feature extraction than BPNDA algorithm.
作者 朱彦
出处 《自动化与仪器仪表》 2017年第9期28-29,34,共3页 Automation & Instrumentation
关键词 深度学习 数据融合技术 层叠自动编码器 分簇协议 deep learning data fusion technology cascading automatic encoder clustering protocols
  • 相关文献

参考文献11

二级参考文献85

  • 1严怀成,黄心汉,王敏.多传感器数据融合技术及其应用[J].传感器技术,2005,24(10):1-4. 被引量:43
  • 2李成法,陈贵海,叶懋,吴杰.一种基于非均匀分簇的无线传感器网络路由协议[J].计算机学报,2007,30(1):27-36. 被引量:373
  • 3钱光耀,杨入超,赵光兴.基于人工神经网络的压力传感器三维数据融合[J].传感器与微系统,2007,26(2):79-81. 被引量:13
  • 4戴亚平,刘征,郁光辉.多传感器数据融合理论及应用[M].北京理工大学出版社,2004:75-81.
  • 5Intanagonwiwat C,Govindan R,Estrin D.Directed Diffusion:a Scalable and Robust Communication Paradigm for Sensor Networks[C]//New York:MobiCom'00,2000:56-67.
  • 6Andr L L de Aquino,Carlos M S Figueiredo,Eduardo F Nakamura,et al.Data Stream Based Algorithms for Wireless Sensor Networks Applications[C]//Ontario:21st International Conference on Advanced Networking and Applications(AINA'07),2007:869-876.
  • 7Heinzelman W,Chandrakasan A,Balakrishnan H.Energy-Efficient Communication Protocols for Wireless Microsensor Networks[C]// Proceedings of 33rd Hawaii International Conference on Systems Science,Washington,DC,2000:8020-8030.
  • 8Reznik L,Von Pless G,AI Karim T.Intelligent Protocols Based on Sensor Signal Change Detection[C]//Proceedings of Systems Communications,2005:443-448.
  • 9van Norden W,de Jong J,Bolderheij F,et al.Intelligent task Scheduling in Sensor Networks[C]//Proceedings of 8th International Conference on Information Fusion,2005.
  • 10Julio Barbancho,Carlos León,F J Molina,et al.Using Artificial Intelligence in Routing Schemes for Wireless Networks[J].Computer Communications,2007,(30):2802-2811.

共引文献124

同被引文献101

引证文献13

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部