期刊文献+

大数据下网络资源信息丢失优化识别仿真 被引量:4

Optimal Identification of Network Resource Information Loss under Large Data
下载PDF
导出
摘要 大数据下网络资源信息丢失的优化识别,能够保证网络稳定正常运行。对丢失资源信息的识别,需要得到浓缩点组成的新数据碎片样本,由此进行训练获得决策函数,完成网络资源丢失信息的识别。传统方法获得网络资源信息组合特征向量,对信息组合特征向量进行丢失识别,但忽略了获取决策函数,导致识别精度偏低。提出基于模糊C均值聚类的大数据下网络资源信息丢失识别算法,采集大数据下不同类型的网络资源信息样本,对不同类型的网络资源信息样本进行特征提取,通过模糊C均值聚类理论对碎片样本进行聚类分析,利用信息浓缩准则对碎片样本聚类中心进行处理,得到浓缩点组成的新数据碎片样本,并使用新数据碎片样本进行训练获得决策函数,以此为依据完成网络资源信息丢失识别。实验结果表明,所提算法能够有效提高网络资源信息识别精度,实用性较强。 An identification algorithm for information loss of network resource under big data is proposed based on fuzzy c-means cluster. Firstly, different types of information samples of network resource under the big data are collected and the feature for the information samples is extracted, then clustering analysis for fragment sample is carried out via the fuzzy c-means duster. Moreover, the criterion of information concentration is used to process center of clustering of the fragment sample, the fragment sample of new data with concentration point is obtained, the fragment sample is used to carry out training, and the decision function is obtained. Finally, the identification of information loss is completed. Experimental results show that the algorithm can improve precision of the identification.
出处 《计算机仿真》 北大核心 2017年第9期358-361,共4页 Computer Simulation
基金 四川省教育厅重大培育项目(16CZ0039)
关键词 大数据 网络资源 丢失信息识别 Big data Network resource Identification of loss information
  • 相关文献

参考文献10

二级参考文献95

  • 1陈刚,杨志强,刘秉权.一种基于PLS的概率神经网络分类算法[J].微电子学与计算机,2015,32(5):73-78. 被引量:4
  • 2安利平,陈增强,袁著祉.基于粗集理论的多属性决策分析[J].控制与决策,2005,20(3):294-298. 被引量:16
  • 3马峻,吉晓民.利用粗糙集理论实现工艺决策的冲突消解[J].计算机辅助设计与图形学学报,2005,17(3):600-604. 被引量:5
  • 4任靖,李春平.最小距离分类器的改进算法——加权最小距离分类器[J].计算机应用,2005,25(5):992-994. 被引量:30
  • 5Dong Xu, Yi Huang, Zinan Zeng, Xinxing Xu.Human gait recognition using patch distribution feature and locality-constrained group sparse representation[J].IEEE Transactions on Image Processing, 2012, 21(1):316-326.
  • 6Zhu Hao, Giannakis Georgios B.Sparseovercomplete representations for efficient identification of power line outages[J].IEEE Transactions on Power Systems, 2012, 27(4):2215-2224.
  • 7Wright John, Yang Allen Y, Ganesh Arvind, Ma Yi.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):210-227.
  • 8Huang Ke, Aviyente Selin.Sparse representations for signal classification[A].20th Annual Conference on Neural Information Processing Systems[C].Vancouver BC:NIPS, 2007.609-616.
  • 9Elad Michael, Aharon Michal.Image denoising via sparse and redundant representations over learned dictionaries[J].IEEE Transactions on Image Processing, 2006, 15(12):3736-3745.
  • 10Ramirez Ignacio, Sprechmann Pablo, Sapiro Guillermo.Classification and clustering via dictionary learning with structured incoherence and shared features[A].Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition[C].San Francisco:IEEE, 2010.3501-3508.

共引文献65

同被引文献40

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部