期刊文献+

带未知观测丢失率的自校正加权观测融合估计 被引量:4

Self-tuning weighted measurement fusion estimation with unknown missing measurement rate
下载PDF
导出
摘要 对于带未知丢失观测率的离散线性随机系统,应用伯努利随机变量来描述观测丢失现象。采用相关函数法辨识丢失观测率。应用加权最小二乘法(WLS)把高维的观测向量进行压缩得到加权观测融合方程。将实时辨识的观测丢失率代入最优加权观测融合滤波器中得到自校正加权观测融合滤波算法。所获得的自校正加权观测融合滤波器收敛于最优融合滤波器。仿真例子验证了算法的有效性。 For discrete-time linear stochastic systems with unknown missing measurement rates, the Bernoulli random variables are used to describe the phenomena of missing measurement and the correlation functions are used to identify the missing measurement rates. The weighted least squares (WLS) method is used to compress the high- dimensional measurement vector to obtain weighted measurement fusion equation. A self-tuning weighted measurement fusion filtering algorithm is obtained by substituting the real-time identified missing measurement rates into the optimal weighted measurement fusion filter. Moreover, the proposed self-tuning weighted measurement fusion filter converges to the optimal fusion filter. A simulation example verifies the effectiveness of the proposed algorithm.
作者 史腾飞 段广全 孙书利 SHI Teng-Fei DUAN Guang-Quan SUN Shu-Li(School of Electronic Engineering, HeilongiiangUniversity, Harbin 150080, China)
出处 《黑龙江大学工程学报》 2017年第3期71-75,共5页 Journal of Engineering of Heilongjiang University
基金 国家自然科学基金资助项目(61573132)
关键词 丢失观测率 自校正 KALMAN滤波器 加权观测融合 missing measurement rate self-tuning Kalman filter weighted measurement fusion
  • 相关文献

参考文献6

二级参考文献34

  • 1邓自立,郝钢,吴孝慧.两种加权观测融合算法的全局最优性和完全功能等价性[J].科学技术与工程,2005,5(13):860-865. 被引量:14
  • 2邓自立.滑动平均模型参数估计的Gevers-Wouters算法的指数收敛性(英文)[J].科学技术与工程,2005,5(20):1473-1478. 被引量:2
  • 3DENG Zi-Li LI Chun-Bo.Self-tuning Information Fusion Kalman Predictor Weighted by Diagonal Matrices and Its Convergence Analysis[J].自动化学报,2007,33(2):156-163. 被引量:14
  • 4ZHANG H S, FENG G, DUAN G R. H∞ filtering for multi-time- delay measurements[J]. IEEE Transactions on Signal Processing, 2006, 54(5): 1681 - 1688.
  • 5ZHANG H S, LU X, CHENG D Z. Optimal estimation for continuous-time systems with delayed measurements[J]. IEEE Transaction on Automatic Control, 2006, 51(5): 823 - 827.
  • 6WANG Z D, HOW C D, LIU X H. Robust filtering under randomly varying sensor delay with variance constraints[J]. IEEE Transactions on Circuits and Systems-Ⅱ: Express Briefs, 2004, 51 (6): 320 - 326.
  • 7PHAT V N, SAVKIN A V. Robust state estimation for a class of uncertain time-delay systems[J]. System & Control Letter, 2002, 47(3): 237 - 245.
  • 8WANG Z D, YANG F W, HOW C D. Robust finite-horizon filtering for stochastic system with missing measurements[J]. IEEE Signal Processing Letters, 2005, 12(6): 437 - 440.
  • 9WANG Z D, YANG F W, HOW C D. Robust finite-horizon filtering for stochastic system with missing measurements[J]. IEEE Signal Processing Letters, 2005, 12(6): 437 - 440.
  • 10SINOPOLI B, SCHENATO L, FRANCESCHETTI M. Kalman filtering with intermittent observations[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1453 - 1464.

共引文献63

同被引文献17

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部