摘要
A two stage turbocharging control system was proposed,in which the pressure regulator valve with a close-loop pressure adjusting function instead of a high speed on-off solenoid valve,is used as a driving mechanism of waste gate.A digital-analog(DA)conversion circuit based on pulse width modulation(PWM)generates one analog voltage signal required by the pressure regulating valve control.The principle of the DA conversion circuit was analyzed,meanwhile,the performance of the conversion circuit was improved by adopting a speed-up capacitor,which helps to increase the stability and responsiveness of the control voltage generated by the conversion circuit;the structure parameters of the circuit was optimized by simulation.After the optimization,the ripple wave of circuit output voltage was kept within16mV under the 12bit conversion accuracy,the conversion time of the circuit could be reduced to 4ms.The engine bench test show that the turbocharging boost pressure control system which adopted the circuit had a rather good stable control accuracy(the steady state within 0.8%)and dynamic response(the regulation time is less than 4s).
A two stage turbocharging control system was proposed,in which the pressure regulator valve with a close-loop pressure adjusting function instead of a high speed on-off solenoid valve,is used as a driving mechanism of waste gate.A digital-analog(DA)conversion circuit based on pulse width modulation(PWM)generates one analog voltage signal required by the pressure regulating valve control.The principle of the DA conversion circuit was analyzed,meanwhile,the performance of the conversion circuit was improved by adopting a speed-up capacitor,which helps to increase the stability and responsiveness of the control voltage generated by the conversion circuit;the structure parameters of the circuit was optimized by simulation.After the optimization,the ripple wave of circuit output voltage was kept within16mV under the 12bit conversion accuracy,the conversion time of the circuit could be reduced to 4ms.The engine bench test show that the turbocharging boost pressure control system which adopted the circuit had a rather good stable control accuracy(the steady state within 0.8%)and dynamic response(the regulation time is less than 4s).
基金
Supported by the Ministerial Level Research Project of China(D2220112901)