摘要
为系统研究超过规范高度限值(190 m)的特大型冷却塔风振特性及风振系数,以国内某在建的高度200 m的特大型冷却塔为研究对象,基于大涡模拟技术对该冷却塔进行了平均和脉动风荷载的数值模拟,并将模拟结果与规范曲线以及国内外现有实测结果进行对比,验证数值模拟方法的有效性。在此基础上,采用有限元方法对该特大型冷却塔的动力特性、风振响应与风振系数进行了系统分析,探讨了以塔筒迎风面子午向轴力、迎风面的von Mises应力、节点径向位移、子午向轴力和环向弯矩为目标响应的风振系数取值方法,归纳出高度200 m特大型冷却塔二维风振系数空间分布特征显著且在塔筒底部及背风区普遍较大的分布规律,给出了此类特大型冷却塔风振系数的取值建议和二维拟合公式。主要研究结论可为高度200 m特大型冷却塔的抗风设计提供科学依据。
To systematically study the wind vibration characteristics and wind vibration coefficient of super large cooling towers over 190 m height limit of standard, a domestic under-construction super large cooling tower with 200 m height was used as the research object. The large eddy simulation of numerical simulation was carried out to simulate the average and pulsating wind load, and the simulation, national code and actual measurement results were compared to verify the effectiveness of the large eddy simulation method. On this basis, the dynamic property, wind-induced response and wind vibration coefficient were analyzed systematically by finite element method. The value obtained methods of wind vibration coefficient based on meridional axial force of windward side, von Mises stress of windward side, radial displacement, meridional axial force and circumferential moment were discussed. The two-dimensional wind vibration coefficients of super large cooling tower with 200 m height level has outstanding spatial distribution characteristics and are generally larger at the bottom and lee regions of the cooling tower. The recommended values and fitting formulas of two-dimensional wind vibration coefficient for this kind of super large cooling towers were given. The research can provide scientific basis for the wind-resistant design of super large cooling towers with 200 m height level.
出处
《建筑结构学报》
EI
CAS
CSCD
北大核心
2017年第10期78-87,共10页
Journal of Building Structures
基金
江苏省优秀青年基金项目(BK20160083)
国家自然科学基金项目(51208254)
中国博士后科学基金项目(2013M530255
1202006B)
江苏高校青蓝工程项目
关键词
特大型冷却塔
大涡模拟
风振系数
取值方法
拟合公式
super large cooling tower
large eddy simulation
wind vibration coefficient
value obtained method
fitting formula