摘要
考虑Hom-Lie代数的结构、表示及上边缘算子的性质.对一般Hom-Lie代数,当映射β可逆时,其上的一系列上边缘算子对应的上同调群是同构的;对正规Hom-Lie代数,向量空间G上的Hom-Lie代数结构及Hom-Lie代数(G,[·,·],α)在向量空间V上的表示与∧G~*V上度数为1的算子以及算子所满足的性质是一一对应的.
The author considered properties of structures,representations and coboundary operators of Hom-Lie algebras.For general Hom-Lie algebras,whenβwas a reversible map,cohomology groups corresponding to a series of coboundary operators were isomorphic;for regular Hom-Lie algebras,there was a one to one relationship between the structure of Hom-Lie algebra(G,[·,·],α)on vector space G,the representation of(G,[·,·],α)on vector space V and operator of degree 1 on∧G^*V with some properties.
作者
熊桢
XIONG Zhen(School of Mathematics and Computer Science, Yichun University, Yichun 336000, Jiangxi Province, Chin)
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2017年第5期1089-1094,共6页
Journal of Jilin University:Science Edition
基金
江西省教育厅科技项目(批准号:GJJ161029)