期刊文献+

Hom-Lie代数及其表示的注记

Remarks on Hom-Lie Algebras and Their Representations
下载PDF
导出
摘要 考虑Hom-Lie代数的结构、表示及上边缘算子的性质.对一般Hom-Lie代数,当映射β可逆时,其上的一系列上边缘算子对应的上同调群是同构的;对正规Hom-Lie代数,向量空间G上的Hom-Lie代数结构及Hom-Lie代数(G,[·,·],α)在向量空间V上的表示与∧G~*V上度数为1的算子以及算子所满足的性质是一一对应的. The author considered properties of structures,representations and coboundary operators of Hom-Lie algebras.For general Hom-Lie algebras,whenβwas a reversible map,cohomology groups corresponding to a series of coboundary operators were isomorphic;for regular Hom-Lie algebras,there was a one to one relationship between the structure of Hom-Lie algebra(G,[·,·],α)on vector space G,the representation of(G,[·,·],α)on vector space V and operator of degree 1 on∧G^*V with some properties.
作者 熊桢 XIONG Zhen(School of Mathematics and Computer Science, Yichun University, Yichun 336000, Jiangxi Province, Chin)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第5期1089-1094,共6页 Journal of Jilin University:Science Edition
基金 江西省教育厅科技项目(批准号:GJJ161029)
关键词 Hom-Lie代数 表示 上边缘算子 Hom-Lie algebra representation coboundary operator
  • 相关文献

参考文献1

二级参考文献18

  • 1Loday, J. L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann., 296, 139-158 (1993).
  • 2Hartwig, J., Larsson, D., Silvestrov, S.: Deformations of Lie algebras using a-derivation. J. Algebra, 295, 314 361 (2006).
  • 3Makhlouf, A., Silvestrov, S.: Notes on formal deformations of Horn-associative and Horn-Lie algebras. Forum Math., 22(4), 715 739 (2010).
  • 4Gao, Y.: The second Leibniz homology group for Kac-Moody Lie algebras. Bull. Lond. Math. Soc., 32, 25-33 (2000).
  • 5Gao, Y.: Leibniz homology of unitary Lie algebras. J. Pure Appl. Algebra, 140, 33 56 (1999).
  • 6Wang, Q., Tan, S.: Leibniz central extension on a Block Lie algebra. Algebra CoUoq., 14(4), 713-720 (2007).
  • 7Liu, D., Lin, L.: On the toroidal Leibniz algebras. Acta Mathematica Sinica, English Series, 24(2), 227-240 (2008).
  • 8Yau, D.: Horn-algebras as deformations and homology. J. Lie Theory, 19, 409-421 (2009).
  • 9Loday, J. L.: Dialgebras, Lecture Notes in Mathematics, Vol. 1763, Springer, 2001, 7-66.
  • 10Casas, J., Datuashvili, T.: Noncommutative Leibniz-Poission algebras. Comm. Algebra, 34, 2507-2530 (2006).

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部