期刊文献+

云计算资源优化问题求解的萤火虫算法 被引量:10

Glowworm Algorithm for Solving Optimization Problem of Cloud Computing Resource
下载PDF
导出
摘要 为了提高云计算资源利用率,结合云计算资源优化问题的特点,设计一种云计算资源优化问题求解的萤火虫算法.首先建立云计算资源负载调度问题的约束条件,以用户任务完成时间最少作为云计算资源负载调度优化的目标函数;然后通过萤火虫算法找到目标函数值最优的资源调度策略;最后在CloudSim平台上实现云计算资源负载调度仿真实验.实验结果表明,萤火虫算法减少了云计算任务完成的时间,均衡了云计算资源的负载,使云计算资源得到合理分配,且比其他算法优势明显. In order to improve the utilization ratio of cloud computing resources,combined with the characteristics of cloud computing resource optimization problem,we designed a glowworm algorithm for solving the optimization problem of cloud computing resources.Firstly,the constraint condition of cloud resource load scheduling was established,and the minimum user task execution time was used as the objective function of cloud computing resource load scheduling optimization.Secondly,glowworm algorithm was used to find the value of the objective function of the optimal resource scheduling strategy.The simulation experiment of cloud computing resource load scheduling was implemented on CloudSim platform.The experimental results show that the proposed algorithm reduces the computation time of cloud computing tasks,balances the load of cloud computing resources,makes the cloud computing resources allocate reasonably,and has obvious advantages over other algorithms.
作者 任长安 赵巾帼 罗庆云 REN Chang'an ZHAO Jinguo LUO Qingyun(School of Computer and Information Science, Hunan Institute of Technology, Hengyang 421002, Hunan Province, China)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第5期1234-1238,共5页 Journal of Jilin University:Science Edition
基金 湖南省科技计划项目(批准号:2013FJ3095) 湖南省教育厅科研项目(批准号:16C0434) 衡阳市科技计划项目(批准号:2016KF08)
关键词 云计算系统 资源调度策略 萤火虫算法 目标函数 负载均衡 cloud computing system resource scheduling strategy glowworm algorithm objective function load balancing
  • 相关文献

参考文献8

二级参考文献53

  • 1JALAPARTI V, NGUYEN G, GUPTA I, et al. Cloud re- source allocation games [ EB/OL ]. (2010-12-02) [ 2013-4- 24 ]. http ://hdl. handle, net/2142/17427.
  • 2PANDEY S, WU L, GURU M S, et al. A particle swarm optimization-based heuristic for scheduling workflow ap- plications in cloud computing environments [ C ]//IEEE International Conference on Advanced Information Net- working and Applications, New York: IEEE Press, 2010: 400-407.
  • 3DEAN J, GHEMAWAT S. Map/reduce:Simplified data pro- cessing on large clusters[J]. Communications of the ACM, 2008,51(1) :107-112.
  • 4KOLLER D, WEBER J, HUANG T, eta|. Towards robust automatic traffic scene analysis in real-time [ C ]//Pro- ceeding of the 33rd IEEE Conference on Decision and Control, 1994:3776-3781.
  • 5BUYYA R, RAN JAN R, CALHEIROS R N. Modeling and simulation of scalable cloud computing environ- ments and the CloudSim toolkit:Challenges and oppor- tunities [ C ]//Proceedings of the Seventh High Perfor- mance Computing and Simulation Conference, New York : IEEE Press, 2009:21-24.
  • 6Rodrigo N.Calheiros,RajivRanjan,AntonBeloglazov,César A. F.De Rose,RajkumarBuyya.CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J].Softw: Pract Exper.2010(1)
  • 7Mark Stillwell,David Schanzenbach,Frédéric Vivien,Henri Casanova.Resource allocation algorithms for virtualized service hosting platforms[J].Journal of Parallel and Distributed Computing.2010(9)
  • 8Michael Armbrust,Armando Fox,Rean Griffith,Anthony D. Joseph,Randy Katz,Andy Konwinski,Gunho Lee,David Patterson,Ariel Rabkin,Ion Stoica,Matei Zaharia.A view of cloud computing[J].Communications of the ACM.2010(4)
  • 9Daniel N,Rich W,Chris G.The eucalyptus open source cloud computing system[J].9th IEEE/ACM International Symposium on Cluster Computing and the Grid,2009:124-131.
  • 10Pandey S,Wu L.A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments[C]//24th IEEE International Conference on Advanced Information Networking and Applications,2010:184-188.

共引文献119

同被引文献76

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部