期刊文献+

索-梁组合结构的面内外模态分析

In-out-plane Modal Analysis of the Cable-stayed Beam
下载PDF
导出
摘要 利用哈密顿变分原理以及结构动静态构型的影响,建立了索-梁组合结构的约化运动学控制方程.根据求解得到的面内面外特征值方程,并通过分段函数的引入,研究了结构的模态函数的几种形式.随后,根据索-梁组合结构中索的模态函数,分析了面内外运动"局部模态"和"模态局部化"现象的产生.研究表明,在面内运动,在不考虑内共振情况下,面内运动索的大幅振动是由于"模态局部化"现象的产生,而根据特征值方程,"局部模态"只能出现在索-梁组合结构索的面外运动. Using the Hamilton principle and the effects of the dynamic and static configuration of the cable and beam, the equations of motion of the cable-stayed beam can be obtained. Considering the boundary and continuity conditions, the in-plane eigenvalue problem is investigated. By introducing the piecewise function, the mode shapes can be obtained. It is shown that the curve veering phenomenon can be observed in the natural frequency spectrum of the system. The frequency crossover phenomenon is obvious. Considering the local mode and global mode, the mode shapes of the cable-stayed beam are discussed.
作者 沈忠伟
出处 《湖南城市学院学报(自然科学版)》 CAS 2017年第2期25-27,共3页 Journal of Hunan City University:Natural Science
基金 湖南省教育厅科研项目(15C1411)
关键词 哈密顿变分原理 索-梁组合结构 局部模态 Hamilton's principle cable-stayed beam local modal
  • 相关文献

参考文献2

二级参考文献16

  • 1Wrnitchai W, Fujino Y, Susumpow T. A non-lineardynamic model for cables and its application to a ca hie-structure system[J]. Journal of Sound and Vibra- tion,1995,187(4) :695 -712.
  • 2Fujino Y, Wrnitchai W, Pacheco B M. An experimen tal and analytical study of autoparametric resonance in a 3DOF model of cable-stayed beam[J]. Nonlinear Dynamics,1993,4(4) :111- 138.
  • 3Kang Z,Xu K S,Luo Z. A numerical study on nonlin- ear vibration of an inclined cable coupled with the deck in Cable-stayed bridges[J]. Journal of Vibration and Control,2012,18(3) :404-416.
  • 4Xia Y, Fujino Y. Auto-parametric vibration of a ca- ble stayed beam structure under random excitation [J]. Journal of Engineering-Mechanics, 2006, 132 (3) :279-286.
  • 5Gattuili V, Lepidi M. Localization and veering in the dynamics of cable stayed bridges[J]. Computers and Structures,2007,85(21) :1661-1678.
  • 6Gattulli V,Morandini M,Paolone A. A parametric an- alytical model for non-linear dynamics in cable-stayed beam[J]. Earthquake Engineering and Structural Dy- namics. 2002,31(6) :1281 1300.
  • 7Gattulli V, Lepidi M. Nonlinear interactions in the planar dynamics of cable-stayed beam[J]. Interna- tional Journal of Solid of Structures, 2003,40 (18): 4729-4748.
  • 8Kang Z,Xu K S,Luo Z. A numerical study on nonlin- ear vibration of an inclined cable coupled with the deck in Cable-stayed bridges[J]. Journal of Vibration and Control, 2012,18(3) :404-416.
  • 9Gattulli V, Morandini M, Paolone A. A parametric an- alytical model for non-linear dynamics in cable-stayed beam[J]. Earthquake Engineering and Structural Dy- namics. 2002,31(6) :1281 1300.
  • 10Chen D S, Wang H O, Chen G R. Anti-Control of Hopf Bifurcations[C]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applica- tions,2001,48(6) :661 672.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部