期刊文献+

动静脉血管自动分类方法及其管径测量 被引量:7

Artery/vein automatic classification in retinal images and vessel diameter Measurement
下载PDF
导出
摘要 视网膜动静脉管径以及动静脉比值可以反映高血压患者脑卒中发病的风险,因此对视网膜血管直径的量化分析有助于病情的风险评估和防治工作。提出了一种视网膜动静脉自动分类和血管直径的自动测量方法。首先,对视网膜血管网络进行分割,并获取中心线;其次选取了不同颜色空间中的不同通道分量,提出了基于中心线像素和血管像素的特征向量、血管宽度和中心光反射的特征向量,采用K均值聚类实现感兴趣测量区域内动静脉的自动分类;最后统计血管横截面的灰度曲线分布,利用高斯曲线进行拟合,根据半高度全宽获取动静脉宽度。分别对REVIEW和DRIVE数据库进行实验,验证了本方法的有效性。 The ratio and the diameter of artery/vein of the retinal can reflect the risk of stroke of hypertension, thus, quantitative analysis of the diameter of the vessel can contribute to risk assessment and prevention of the disease. A artery/vein automatic classification method in Retinal Images and Vessel Diameter Measurement are introduced in this paper. Firstly, the vessel eenterline is obtained after segmenting the retinal vessel. Secondly, different channel components in different color spaces are selected, the eigenvectors of centerline pixels, vessel pixels, vessel widths and central light reflection are defined. K-means clustering algorithm is adopted to classify the artery/vein in the measurement region of interest. Finally, the distribution curve of the vessel cross section is fitted using the Gaussian curve and the width of the artery/vein can be obtained according to Half Height Full Width. Experiments with Review public database and Drive public database prove the effectiveness of the proposed method.
作者 薛岚燕 曹新容 林嘉雯 郑绍华 余轮 Xue Lanyan Cao Xinrong Lin Jiawen Zheng Shaohua Yu Lun(College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China Institute of Computer and Information, Fufian Agriculture and Forestry University, Fuzhou 350002, China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第9期2307-2316,共10页 Chinese Journal of Scientific Instrument
基金 福建省自然科学面上基金(2016J01297) 福建省中青年教师教育科研项目(JAT160398 JAT160070)资助
关键词 眼底图像 血管特征向量 动静脉分类 血管直径测量 fundus image vessel eigenvector artery/vein classification vessel diameter measurement
  • 相关文献

参考文献9

二级参考文献113

  • 1姚畅,陈后金.一种新的视网膜血管网络自动分割方法[J].光电子.激光,2009,20(2):274-278. 被引量:17
  • 2赵堪兴.眼科学[M].北京:人民卫生出版社,2008:231-232.
  • 3王维治.神经病学[M].北京:人民卫生出版社,2002.142-147.
  • 4朱琳琳,唐延东.基于眼底特征的视盘自动检测[J].仪器仪表学报,2010,31(增刊1):118-122.
  • 5Abdel-Razik Youssif AAH,Ghalwash AZ,Abdel-Rahman Ghoneim AAS.Optic disc detection from normalized digital fundus images by means of a vessels' direction matched filter[J].lEEETransMedImaging,2008,27(1):11-18.
  • 6Qureshi RJ,Kovacs L,Harangi B,et al.Combining algorithms for automatic detection of optic disc and macula in fundus images[J].Computer Vision and Image Understanding,2012,116 (1):138-145.
  • 7Sinthanayothin C,Boyce JF,Cook HL,et al.Automated localisation of the optic disc,fovea,and retinal blood vessels from digital colour fundus images[J].British Journal of Ophthalmology,1 999,83 (8):902-910.
  • 8Walter T,Klein JC.Segmentation of color fundus images of the human retina:Detection of the optic disc and the vascular tree using morphological techniques[M]//Medical Data Analysis.BerLin:Springer Berlin Heidelberg,2001:282-287.
  • 9Li Huihua,Chutatape O.Automatic location of optic disk in retinal images[C]//Proceedings of International Conference on Image Processing.Thessaloniki:IEEE,2001,2:837-840.
  • 10Lalonde M,Beaulieu M,Gagnon L.Fast and robust optic disc detection using pyramidal decomposition and Hausdorff-based template matching[J].IEEE Trans Med Imaging,2001,20 (11):1193-1200.

共引文献57

同被引文献47

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部