期刊文献+

Generalized Block Markov Superposition Transmission over Free-Space Optical Links

Generalized Block Markov Superposition Transmission over Free-Space Optical Links
下载PDF
导出
摘要 In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fading induced by atmospheric turbulence. In this paper, we present the generalized block Markov superposition transmission(GBMST) of repetition codes to improve time diversity. In the GBMST scheme, information sub-blocks are transmitted in the block Markov superposition manner, with possibly different transmission memories. Based on analyzing an equivalent system, a lower bound on the bit-error-rate(BER) of the proposed scheme is presented. Simulation results demonstrate that, under a wide range of turbulence conditions, the proposed scheme improves diversity gain with only a slight reduction of transmission rate. In particular, with encoding memory sequence(0, 0, 8) and transmission rate 1/3, a diversity order of eleven is achieved under moderate turbulence conditions. Numerical results also show that, the GBMST systems with appropriate settings can approach the derived lower bound, implying that full diversity is achievable. In free-space optical(FSO) communications, the performance of the communication systems is severely degraded by atmospheric turbulence. Channel coding and diversity techniques are commonly used to combat channel fading induced by atmospheric turbulence. In this paper, we present the generalized block Markov superposition transmission(GBMST) of repetition codes to improve time diversity. In the GBMST scheme, information sub-blocks are transmitted in the block Markov superposition manner, with possibly different transmission memories. Based on analyzing an equivalent system, a lower bound on the bit-error-rate(BER) of the proposed scheme is presented. Simulation results demonstrate that, under a wide range of turbulence conditions, the proposed scheme improves diversity gain with only a slight reduction of transmission rate. In particular, with encoding memory sequence(0, 0, 8) and transmission rate 1/3, a diversity order of eleven is achieved under moderate turbulence conditions. Numerical results also show that, the GBMST systems with appropriate settings can approach the derived lower bound, implying that full diversity is achievable.
出处 《China Communications》 SCIE CSCD 2017年第9期80-93,共14页 中国通信(英文版)
基金 partially supported by the Basic Research Project of Guangdong Provincial Natural Science Foundation (No.2016A030308008) the National Natural Science Foundation of China (No.91438101 and No.61501206) the National Basic Research Program of China (973 Program) (No.2012CB316100)
  • 相关文献

参考文献1

二级参考文献4

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部