期刊文献+

多启发式信息蚁群优化算法求解取样送检路径规划问题 被引量:3

Ant Colony Optimization with Multi-Heuristic Information for Sampling Inspection Path Planning Problem
原文传递
导出
摘要 蚁群优化算法是一种求解组合优化问题的通用算法框架.取样送检路径规划问题是一种带约束的组合优化问题,本文给出了一种求解该问题的数学模型.为求解该问题提出了一种多启发式信息蚁群优化算法(MACO),在选择下一访问节点的概率计算公式中增加了一项启发式信息——起点到被选择点之间距离的倒数,并从理论上分析了该算法的收敛性.在9个算例上进行了仿真实验和分析,说明了新增启发式信息的有效性和适用性,验证了MACO算法可以有效求解该问题,并能获得质量更好的解. Ant colony optimization (ACO) is a general framework for the combinational optimization problem. The sampling inspection path planning problem is a constrained combinatorial optimization problem. The paper gives a mathematical model of the problem and proposes a multi-heuristic information ant colony optimization algorithm (MACO) to solve it. The reciprocal of the distance between the source node and the feasible node is joined in the probabilistic formula for choosing the next feasible node as a new heuristic information. Then the convergence property of MACO is analyzed. The simulation experiments are done on nine cases. The results demonstrate the availability of the new heuristic information for the problem and good performance of MACO in terms of the solution accuracy.
作者 周凌云 丁立新 邹桢苹 ZHOU Lingyun DING Lixin ZOU Zhenping(School of Computer, Wuhan University, Wuhan 430072, Hubei, China College of Computer Science, South-Central University for Nationalities, Wuhan 430074, Hubei, China Economics and Management School,Wuhan University, Wuhan 430072, Hubei, China)
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2017年第5期439-447,共9页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(61379059) 广东省产学研合作项目(2016B090918097)
关键词 取样送检路径规划问题 组合优化 蚁群优化 多启发式信息 sampling inspection path planning problem combinatorial optimization ant colony optimization multi-heuristic information
  • 相关文献

参考文献3

二级参考文献19

共引文献21

同被引文献35

引证文献3

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部