期刊文献+

基于群集蜘蛛算法的神经网络控制器研究 被引量:1

A Study of Neural Network Controller Based on Social Spider Algorithm
下载PDF
导出
摘要 研究了群集蜘蛛算法对神经网络控制器参数进行优化的方法。使用神经网络控制器对他励直流电机的转速进行弱磁控制,以期提高闭环控制的性能。构建了MATLAB/Simulink下的仿真模型,分析了在不同的转速设定值下系统的稳态性能和动态响应。仿真结果显示,基于群集蜘蛛算法优化的神经网络控制器具有适应性强、动态过程过渡平稳快捷等优点。 The optimization method on parameters of neural network controller using social spider algorithm was stud- ied. The neural network controller was used in controlling the speed of a separately excited DC motor under field weakening condition to improve the performance of closed loop control. By using MATLAB/Simulink, the system was simulated to ana- lyze the steady-state performance and dynamic response of the system under different speed setting values. The simulation resuhs show that the controller has the advantage of strong adaptability and the dynamic process of the system presents smoothly and fast.
作者 孟昕元 范峥
机构地区 河南工学院
出处 《微特电机》 北大核心 2017年第9期33-36,共4页 Small & Special Electrical Machines
基金 河南省科技厅科技攻关重点项目(162102310167)
关键词 他励直流电机 弱磁控制 神经网络控制器 群集蜘蛛算法 separately excited DC motor drive field weakening control neural network controller social spider algo-rithm
  • 相关文献

参考文献4

二级参考文献25

  • 1朱益江.自调整PI参数的直流调速系统研究及仿真[J].连云港职业技术学院学报,2006,19(4):4-6. 被引量:4
  • 2Liu Z Z, Luo F L, Rashid M H. High performance nonlinear MIMO field weakening controller of a separately excited dc motor [J]. Electric Power System Research. 2000, 55: 157-164.
  • 3Slotine J J E, Li W. Applied nonlinear control[M]. New Jersey:Prentice-Hall, 1991.
  • 4Erik C, Miguel C, Daniel Z, et al. A swarm optimization algorithm inspired in the behavior of the social-spider[J]. Expert Systems with Applications, 2013, 40(1): 6374- 6384.
  • 5Erik C, Miguel Cienfuegos. A new algorithm inspired in the behavior of social-spider for constrained optimization[J]. Expert Systems with Applications, 2014, 41(1): 412-425.
  • 6Karaboga D. An idea based on bee swarm for numerical optimization[R]. Report-TR06. Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
  • 7Karaboga D, Basturk B. On the performance of artificial bee colony(ABC) algorithm[J]. Applied Soft Computing, 2008, 8(1): 687-697.
  • 8Lou Y, Li J L. A differential evolution algorithm based on ordering of individuals[C]. The 2nd Int Conf on Industrial Mechatronics and Automation. Wuhan: IEEE Press, 2010: 105-108.
  • 9Saucer T W, Sih V. Optimizing nanophotonic cavity designs with the gravitational search algorithm[J]. Optics Express, 2013, 21(18): 20831-20836.
  • 10Tsai H C, Tyan Y Y, Wu Y W, et al. Gravitational particle swarm[J]. Applied Mathematics and Computation, 2013, 219(17): 9106-9117.

共引文献32

同被引文献18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部