期刊文献+

协同表示下显著特征块筛选的人脸表情识别

Discriminative Patches Selection Based on Collaborative Representation for Facial Expression Recognition
下载PDF
导出
摘要 针对人脸不同区域对于各种表情具有不同程度的区分性这一发现,提出一种基于协同表示(Collaborative Representation,CR)筛选特征块的人脸表情识别新方法.首先,通过协同表示学习训练样本,筛选出使得认证样本集中各类表情识别率达到最高的若干候选特征块;之后,在测试阶段,针对每个测试样本从候选块中自动筛选出独立的样本特征块,用于对该测试样本进行分类.与以往的块筛选方法不同,本文针对单个测试样本筛选出区分性的块.本文方法在CK+和JAFFE人脸表情库上的表现超越了其他特征块相关方法,并在不同分辨率和多种强度表情下取得了较好的识别效果. Since the regions of face have different degrees of contributions to expression recognition, we proposed a new discriminative patches selection algorithm based on the Collaboration Representation ( CR ) for facial expression recognition. Firstly, candidate patches which classify validation samples well for each expression is selected by using the Collaborative Representation based Classification. Then,sample dependent patches which from candidate patch set are automatically further selected for different testing samples to classify each sample. Unlike to the previous patches selection method, we select discriminative patches for each testing sample. The pro- posed method performs well on CK + and JAFFE facial expression databases compared to other relative feature patches method, and gets better accurancy under different resolutions and multi-intensity expression conditions.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第10期2263-2267,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61202312 61673193)资助 中央高校基本科研业务费专项基金项目(JUSRP51635B JUSRP51510)资助 江苏省自然科学基金项目(BK20150159)资助
关键词 特征块筛选 表情识别 协同表示 低分辨率 低强度表情 discriminative patches selection facial expression recognition collaboration representation low resolution low intensity
  • 相关文献

参考文献2

二级参考文献33

  • 1唐京海,张有为.基于FLD特征提取的SVM人脸表情识别方法[J].计算机工程与应用,2006,42(11):10-12. 被引量:11
  • 2朱健翔,苏光大,李迎春.结合Gabor特征与Adaboost的人脸表情识别[J].光电子.激光,2006,17(8):993-998. 被引量:48
  • 3徐正光,闫恒川,张利欣.基于表情识别的独立成分分析方法的研究[J].计算机工程,2006,32(24):183-185. 被引量:8
  • 4Chen X W,Thomas H.Facial expression recognition:a clustering-based approach[J].Pattern Recognition Letters,2003,24(9/10):1295-1302.
  • 5Li M, Yuan B Z.2D-LDA: a statistical linear discriminant analysis for image matrix[J].Pattern Recognition Letters, 2005,26 (5) : 527-532.
  • 6Buclu C,Kotropoulos I,Ptas.Comparison of ICA appro- aches for facial expression recognition[J].Signal, Image and Video Processing, 2009,3 (4) : 345-361.
  • 7Ojala T,Pietikainen M,Harwood D.A comparative study of texture measures with classification based on feature distributions[J].Pattern Recognition, 1996,29( 1 ) : 51-59.
  • 8Feng X,Pietikainen M,Hadid A.Facial expression recog- nition with local binary patterns and linear programming[J]. Pattern Recognition and Image Analysis, 2005, 15(2): 546-548.
  • 9Zhao G, Pietikainen M.Dynamic texture recognition using local binary patterns with an application to facial expres- sions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29 (6) : 915-928.
  • 10Shan C,Gong S,McOwan P W.Facial expression recog- nition based on local binary patterns: a comprehensive study[J].Image and Vision Computing,2009,27 : 803-816.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部