期刊文献+

多传感器滤波融合的惯性定位算法 被引量:6

Inertial localization algorithm based on multi-sensor filter fusion
下载PDF
导出
摘要 针对在导航系统姿态解算中,陀螺仪和电子罗盘在解算姿态时分别存在积分误差和磁场干扰的问题,提出了利用Kalman滤波和互补滤波相融合的算法进行定位。首先将电子罗盘和陀螺仪通过Kalman滤波得出最优估计四元数,然后利用互补滤波算法对陀螺仪的漂移进行补偿得到校正后的四元数,将此次得到的四元数和Kalman滤波得出最优估计四元数再次通过Kalman滤波对四元数进行第二次最优估计,进而输出姿态角。实验中对比了本算法和互补滤波算法、无滤波算法的效果。实验证明,该算法不仅可以有效解决方位角误差发散问题,还有效解决了磁场干扰问题,实现了高精度的方位输出。 Aiming at the problem that the azimuth angle of the gyroscope exists integral error and the interference of the magnetic compass in the electronic compass solution, the Kalman filter and the complementary filter is proposed in the navigation system. Firstly, the optimal compute quaternion is obtained by Kalman fihering, and then the complementary filter algorithm is used to compensate the drift of the gyroscope to obtain the corrected quaternion.The obtained quaternionand Kalman filter to get the optimal estimate of the number of quaternion again and through the Kalman filter for the optimal estimation of the quaternion, and then achieve accurate positioning. In the experiment, compared with no filtering algorithm and single complementary filtering algorithm, the results show that the algorithm can not only solve the divergence problem of azimuth error, but also effectively solve the prob- lem of magnetic field interference.
出处 《电子技术应用》 北大核心 2017年第10期86-88,98,共4页 Application of Electronic Technique
关键词 陀螺漂移 互补滤波 KALMAN滤波 磁场干扰 gyroscope drift complementary filter Kalman filter magnetic field interference
  • 相关文献

参考文献4

二级参考文献29

  • 1闫冬,管欣,高振海.基于MEMS技术的微惯性传感器及在汽车上的应用[J].汽车技术,2006(2):1-6. 被引量:15
  • 2秦勇,臧希喆,王晓宇,赵杰,蔡鹤皋.基于MEMS惯性传感器的机器人姿态检测系统的研究[J].传感技术学报,2007,20(2):298-301. 被引量:62
  • 3Qin Li, Zhang Huixin, Xu Mixing. Optimizing Algorithms of the Attitude of the Flying Objects[ J ]. Sensors, Proceedings of IEEE, 2004,2:927-930.
  • 4Barshan B, Durrant-Whyte H F. Inertial Navigation Systems for Mobile Robots [J]. IEEE Transactions on Robotics and Automation, 1995,11 (3) :328-342.
  • 5Kalman R E. A New Approach to Linear Filtering and Prediction Problems [ J ]. Transactions of the ASME Journal of Basic Engineering, 1960,82 ( Series D) :35-45.
  • 6张思奇,赵忆文.便携式移动机器人姿态解算方法[J].微计算机信息,2007,23(29):188-189. 被引量:5
  • 7杨大明.空间飞行器姿态控制系统[M].哈尔滨:哈尔滨工业大学出版社,2002.
  • 8GregoryTAKovacs.微传感器与微执行器全书.北京:科学出版社,2003.
  • 9Hanse J G. Honeywell MEMS inertial technology & prod- uct status. ION NTM 2004, California, 2004.
  • 10Scholar M Tech. MEMS technology & application in de- fense navigation system. International Journal of Engi- neering Research & Technology( IJERT), 2013 (10).

共引文献67

同被引文献37

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部