期刊文献+

加性脉冲噪声驱动的线性分数阶调和振子的扩散(英文)

Diffusion of linear fractional harmonic oscillator driven by additive impulsive noise
下载PDF
导出
摘要 本文研究了加性脉冲噪声驱动的线性分数阶调和振子的扩散行为.利用Laplace变换、双Laplace变换技巧及脉冲微分方程的基本性质,本文得到了振子位移的均值、方差、关联函数及均方位移.这些量均可以通过三参数的广义Mittag-Leffler函数来表示.然后,基于Mittag-Leffler函数的渐进性质,本文研究了振子的短时和长时扩散行为.研究表明,加性脉冲噪声增强振子的短时超扩散,并抬升振子的长时欠扩散均方位移. Diffusion of a linear fractional impulsive noise is investigated. By using basic properties of impulsive differential harmonic oscillator driven by both thermal noise and additive the Laplace and double Laplace equation, the mean, variance, transform techniques and some correlation function and mean square displacement (MSD) of the oscillator are expressed by generalized Mittag-Leffler functions with three parameters. Furthermore, asymptotic diffusion of the oscillator is investigated in terms of the asymptotic properties of generalized Mittag-Leffler function. It is shown that the additive impulsive noise enhances the ballistic diffusion of the oscillator for short time-lag and adds a constant to the MSD for long time-lag.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第5期929-934,共6页 Journal of Sichuan University(Natural Science Edition)
基金 桥梁无损检测与工程计算四川省高校重点实验室开放基金(2015QYJ06)
关键词 分数阶调和振子 均方位移 脉冲噪声 扩散 Fractional harmonic oscillator Mean square displacement Impulsive noise: Diffusion
  • 相关文献

参考文献1

二级参考文献15

  • 1Mason T G, Weitz D A. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids [J]. Phys Rev Lett, 1995, 74 (7): 1250.
  • 2Mason T G, Ganesan K, van Zan ten J H, et al. Particle tracking microrhology of complex fluids [J]. Phys Rev Lett, 1997, 79(17): 3282.
  • 3Mason T G. Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation [J]. Rheol Acta, 2000, 39: 371.
  • 4Burov S, Barkai E. Fractional Langevin equation: overdarnped , underdamped and critical behavior [J]. Phys Rev E, 2008, 78: 031112.
  • 5Lutz E. Fractional Langevin equation [J]. Phys Rev E, 2001, 34: 051106.
  • 6Kwok SF. Generalized Langevin equation with fractional derivative and long-time correlation function [J]. Phys Rev E, 2006, 73: 061104.
  • 7Goychuk I. Fractional Brownian motors and sto- chastic resonance [J]. Phys Rev E, 2012, 85: 051131.
  • 8Gemant A. A method of analyzing experimental results obtained from elasto-viscous bodies [J]. Physics, 1936, 7: 311.
  • 9Helfer E, Harlepp S, Bourdieu L, et at. Microrheology of biopolymer-membrane complexes [J]. Phys Rev Lett, 2000, 85(2): 457.
  • 10Desposito M A, Vinales A D. Subdiffusive behavior in a trapping potential: mean square displacement and velocity autocorrelation function [J]. Phys Rev E, 2009, 80: 021111.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部