期刊文献+

基于医学高光谱显微图像光谱空间信息的血细胞分类 被引量:2

Blood cell classification based on spectral-spatial information in medical hyperspectral image
下载PDF
导出
摘要 目的:提出一种新的从医学高光谱成像中提取基于光谱空间信息的血细胞分类框架。给出一个使用高光谱成像的血细胞分类与计数方法,能以其独特的特征改善分类精度和异常细胞的识别。方法:使用显微高光谱摄像仪采集高光谱血细胞图像,能够同时保证采集数据的高空间和光谱分辨率。高光谱数据中包含了几十个连续的窄波段,这样能够显示不同物质的光谱细节信息差异。对于血细胞分类,波段选择首先采用保存信息量最丰富的波段,然后用Gabor滤波器表示有用的空间信息。最后,使用一些先进的基于像素的分类器,例如稀疏表示分类器、支持向量机、核函数极限学习机,去验证所提取光谱空间特征。结果:本文提出的分类框架,充分利用了极有可能是同类像素的空间邻域信息,这已经经过了医学高光谱数据的验证。结论:实验结果表明此框架在不同训练样本数量的情况下,与传统单纯基于光谱信息分类方法相比,显著提升了分类精度。 Objective To propose a novel blood cell classification framework based on spectral-spatial information extracted from medical hyperspectral image for performing blood cell classification and counting and improving classification accuracy and identification of abnormal cells with the unique features of hyperspectral image. Methods The hyperspectral images of blood cells were obtained with a microscope and a hyperspectral camera to make sure the data had high spatial and spectral resolution.Dozens of successive narrow wavelength bands were included in the hyperspectral data, which showed the detailed spectral information about different substances. For blood cell classification, band selection was firstly applied to preserve the most informative bands, in which the useful spatial information was represented with Gabor filter. And then, several state-of-the-art pixel-based classifiers, such as sparse representation-based classification, support vector machine, and kernal-based extreme learning machine, were used to verify the extracted spectral-spatial features. Results The proposed classification framework fully utilizd the spatial information surrounding locations where pixels tend to be the same class, and the performance of the proposed classification framework for blood cell classification and counting was validated with medical hyperspectral data. Conclusion Even when the number of training samples varies, the proposed framework can achieve a significantly higher classification accuracy than these conventional pixel-wise solely with spectral information classifiers.
作者 谌春仙 常岚 李伟 唐博 SHEN Chunxian CHANG Lan LI Wei TANG Bo(Suizhou Central Hospital, Hubei University of Medicine, Suizhou 421300, China College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China)
出处 《中国医学物理学杂志》 CSCD 2017年第9期912-919,共8页 Chinese Journal of Medical Physics
基金 北京市自然科学基金(4172043) 北京市科技新星计划(Z171100001117050) 中央高校基本科研业务费专项资金(BUCTRC201615)
关键词 医学高光谱成像 血细胞分类 GABOR滤波器 稀疏表示 medical hyperspectral imaging blood-cell classification Gabor filter sparse representation
  • 相关文献

参考文献1

二级参考文献10

  • 1肖功海,舒嵘,薛永祺.显微高光谱成像系统的设计[J].光学精密工程,2004,12(4):367-372. 被引量:35
  • 2Tuan V D,,David L S,Nusundi B W, et al.A hyperspectral imaging system for in vivo optical diagnostics[].IEEE Engineering in Medicine and Biology Magazine.2004
  • 3Martin A A,James B C,David M H.Multispectral imaging of burn wounds: A new clinical instrument for evaluating burn depth[].IEEE T Bio-Med Eng.1988
  • 4Costas B.A novel optical imaging method for the early detection,quantitative grading, and mapping of cancerous and precancerous le- sions of cervix[].IEEE T Bio-Med Eng.2001
  • 5Martinez L.A non-invasive spectral reflectance method for mapping blood oxygen saturation in wounds[].Proceedings of the st Ap- plied Imagery Pattern Recognition Workshop.2002
  • 6Seong G K,Zheng D,Matthew M, et al.Hyperspectral fluorescence image analysis for use in medical diagnostics, advanced biomedical and clinical diagnostic systems III[].Proceedings of SPIE the International Society for Optical Engineering.2005
  • 7Matt E M,Wabuyelea M B,Panjehpourb M, et al.Dual modality fluorescence and reflectance hyperspectral imaging: Principle and applications[].Proceedings of SPIE the International Society for Optical Engineering.2005
  • 8LI Hong Bo SHU Rong XUE Yong Qi (Shanghai Institute of Technical Physics,Chinese Academy of Sciences,Shanghai 200083,China).PUSHBROOM HYPERSPECTRAL IMAGER AND ITS POTENTIAL APPLICATION TO OCEANOGRAPHIC REMOTE SENSING[].Journal of Infrared and Millimeter Waves.2002
  • 9XIAO Gong-hai,SHU Rong,XUE Yong-qi (Shanghai Institute of Technical Physics,The Chinese Academy of Sciences,Shanghai 200083,China).Design of microscopic hyperspectral imaging system[].Optics and Precision Engineering.2004
  • 10李红波,舒嵘,薛永祺.PHI超光谱成像系统及其海洋遥感应用前景分析[J].红外与毫米波学报,2002,21(6):429-433. 被引量:20

共引文献5

同被引文献21

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部