期刊文献+

基于低秩和全变差正则化的图像压缩感知重构 被引量:6

Image compressive sensing reconstruction based on low-rank and total variation regularization
下载PDF
导出
摘要 为了解决基于低秩正则化的图像压缩感知重构算法不能充分利用图像局部梯度稀疏特性的问题,提出了一种基于低秩与全变差正则化的图像压缩感知重构算法.首先,通过图像块匹配法寻找结构相似的图像块,组成非局部相似块组;其次,联合相似块矩阵低秩与图像梯度稀疏先验组成正则化项,结合传统的压缩感知模型形成新模型;最后,采用交替方向乘子法实现图像的重构.测试图像为自然灰度图像,为了验证算法的有效性,从主观视觉和峰值信噪比两方面进行对比.试验结果表明,和基于低秩正则化的图像压缩感知算法相比,该算法在准确描述图像非局部自相似性结构特征的前提下提高了重构质量,重构的图像在峰值信噪比上平均提升1 d B. To solve the problem that image compressive sensing reconstruction algorithm via nonlocal lowrank regularization could not adequately exploit the local gradient sparsity, an improved image construction algorithm was proposed based on low-rank and total variation regularization. The similar patches were found by image block matching method and formed into nonlocal similar patch groups. The regularization term of combining low-rank prior of nonlocal similarity patch groups with gradient was embedded into reconstruction model, which was solved by alternating direction multiplier method( ADMM) to obtain the reconstructed image. The test images were gray scale images. To verify the proposed algorithm,the experimental results were compared by subjective vision and peak signal-to-noise ratio( PSNR). The experimental results show that compared with the algorithm via nonlocal low-rank,the proposed method can significantly improve the quality of reconstructed image with nonlocal self-similar structure precisely described,and the PSNR of reconstructed images is increased about 1 d B in average.
作者 杨桄 封磊 孙怀江 孙权森 YANG Guang FENG Lei SUN Huaifiang SUN Quansen(School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, .liangsu 210094, China)
出处 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第5期571-575,614,共6页 Journal of Jiangsu University:Natural Science Edition
基金 国家自然科学基金资助项目(61273251)
关键词 压缩感知 图像重构 全变差 低秩近似 交替方向乘子法 compressive sensing image reconstruction total variation low-rank approximation alternative direction multiplier method
  • 相关文献

参考文献1

二级参考文献13

  • 1Matteo Corno, Mathieu Gerard, Michel Verhaegen, Edward Holweg. Hybrid ABS control using force mea-surement [ J ]. IEEE Transactions on Control Systems Technology, 2012, 20(5): 1223- 1235.
  • 2Di Zhigang, Zhang Jingxuan, Jia Chunrong. An im- proved wavelet threshold denoising algorithm [ C ]//Pro- ceedings of 2013 3 rd International Conference on Intelli- gent System Design and Engineering Applications. Hong Kong : IEEE Computer Society, 2012:297 - 299.
  • 3Chen Guangyi, Xie Wenfang, Zhao Yongjia. Wavelet- based denoising : a brief review [ C] //Proceedings of 2013 Fourth International Conference on Intelligent Con- trol and Information Processing. Beijing:IEEE Computer Society, 2013:570 - 574.
  • 4Jia Hairong, Ren Yongmei, Zhang Xueying. An im- proved wavelet packet threshold function for speech en-hancement method [Jl. Journal of lnformatimt and Computational Science, 2013, 10 ( 3 ) : 941 - 948.
  • 5Ma Jianwei, Plonka Gerlind, Chauris Herv6. A new sparse representation of seismic data using adaptive ea- sy-path wavelet transform[ J]. IEEE Geoscience and Re- mote Sensing Letters, 2010, 7(3) : 540 -544.
  • 6Zhang Yongxiang, Zhao Xiaoxu, Yuan Huimei, et al. Wavelet packet threshold approach to denoising piezoe- lectricity Gyro signal [ C ]//Proceedings of 2009 Interna- tional Conference on Computer Engineering and lbchno- logy. Singapore: IEEE Computer Society, 2009:266 - 269.
  • 7Marco F Duarte, Yonina C Eldar. Structured compressed sensing : from theory to applications [ J ]. IEEE Transac- tion on Signal Processing ,2011,59 ( 9 ) :4053 - 4085.
  • 8Qaisar S, Bilal R M, lqbal W, et al. Compressive sen- sing: from theory to applications, a survey[J]. Journal of Communications and Networks ,2013, 15 ( 5 ) : 443 - 456.
  • 9张小龙,冯能莲,张为公.基于车轮力直接测量ABS性能试验研究[J].中国机械工程,2008,19(6):751-755. 被引量:6
  • 10张小龙,冯能莲,张为公,马德贵.车轮多分力传感器静态解耦方法[J].农业机械学报,2008,39(4):18-23. 被引量:10

共引文献4

同被引文献44

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部