期刊文献+

广义Bartlett图的分类研究

Study of the Classification of Generalized Bartlett Graphs
下载PDF
导出
摘要 针对贝叶斯推断问题研究了广义Bartlett图的一类新模型。运用无向图的可分解覆盖算法,对长度大于等于4的圈和完全二分图G=K_(m,m)(m大于等于3)进行研究。研究结果表明,长度大于等于4的圈属于广义Bartlett图,完全二分图G=K_(m,m)(m大于等于3)不属于广义Bartlett图。通过引入广义Bartlett图的概念和可分解覆盖算法,避免了在不可分解图上进行贝叶斯推断时模型选择的困难。 A new graphical models-Generalized Bartlett graphs are studied for Bayesian inference problems.The circle with length greater than or equal to 4 and the complete bipartite graph G=Km,m(mgreater than or equal to 3) are studied by the decomposable covering algorithm of undirected graphs.The circle with length greater than or equal to 4 belongs to the generalized Bartlett graph,and the complete bipartite graph G=Km,m(mgreater than or equal to 3) does not belong to the generalized Bartlett graph.By introducing the concept of generalized Bartlett graph and decomposable covering algorithm,avoiding the difficulty of model selection when Bayesian inference is performed on graphs.
出处 《青岛大学学报(自然科学版)》 CAS 2017年第3期11-14,共4页 Journal of Qingdao University(Natural Science Edition)
基金 山东省自然科学基金(批准号:ZR2016AM29)资助
关键词 可分解图 广义Bartlett图 可分解覆盖 decomposable graph generalized Bartlett graph decomposable cover
  • 相关文献

参考文献5

二级参考文献80

  • 1张宏毅.银行操作风险度量方法比较[J].经济理论与经济管理,2004,24(11):26-29. 被引量:9
  • 2樊欣,杨晓光.我国银行业操作风险的蒙特卡罗模拟估计[J].系统工程理论与实践,2005,25(5):12-19. 被引量:49
  • 3周好文,杨旭,聂磊.银行操作风险度量的实证分析[J].统计研究,2006,23(6):47-51. 被引量:11
  • 4张建华,涂涛涛.结构突变时间序列单位根的“伪检验”[J].数量经济技术经济研究,2007,24(3):142-151. 被引量:11
  • 5Mignola G, Ugoccioni R. Tests of extreme value theory[J]. Operational Risk, 2005, 6(10) : 32-35.
  • 6Industry Technical Working Group on Operational Risk. An LDA-Based Advanced Measurement Approach for the Measurement of Operational Risk : Ideas, Issues and Emerging Practices [ DB/OL].http ://www. newyorkfed, org/newsevents/events/banking/2003/con0529p.pdf, 2003.
  • 7Bradlow, Eric T., Bruce G.S. Hardie, Peter S. Fader. Bayesian Inference for the Negative Binomial Distribution Via Polynomial Expansions[J].Journal of Computational and Graphical Statistics, 2002,11(1).
  • 8Barlow, R. E, Proschan, F. Statistical Theory of Reliability and Life Testing: Probability Models[M].New York: Holt, Rinehart and Winston, 1975.
  • 9David L,Libby, Melvin R, Novick. Multivariate Generalized Beta Distributions with Applications to Utility Assessment[J].Joumal of Educational Statistics,1982,7 (4).
  • 10D. H. Young. Some Results for the Order Statistics of the Negative Binomial Distribution Under Slippage Configuration [J]. Biometrika, 1973,60(1).

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部