期刊文献+

随机粗糙表面光散射场分布特性的机理研究 被引量:3

Study on the Scattering Characteristics Mechanism of Random Rough Surfaces
下载PDF
导出
摘要 为了研究随机粗糙表面光散射分布特性机理,采用线性滤波法生成高斯分布随机粗糙表面,以基尔霍夫近似作为电磁场边界条件,采用蒙特卡罗方法数值计算了一组金属和一组电介质粗糙表面在S偏振光和P偏振光照射下的散射光强度空间分布。计算结果显示:金属表面与电介质表面的散射光分布宽度、散射峰值、散射峰位置三个散射特征存在显著差异,经过分析发现这种特征差异的产生机理是由表面面元的斜率分布和面元反射率共同因素导致,与数值计算结果对比,二者具有良好的一致性。 To study random rough surface scattering distribution characteristics and influence factors of distribution characteristics,linear filtering method is used to generate Gaussian random rough surface,and Monte Carlo numerical method based on Kirchhoff approximation is deduced to calculate the scattering light intensity spatial distribution from one set random metal and one set dielectric rough surfaces illuminated by S and P polarized light.The three characteristics of the scattering light intensity distribution peak,the intensity distribution width and the position of peak are reviewed.Numerical calculation results show that significant differences between scattering characteristics of metal surfaces and the dielectric surfaces exist.The light scattering characteristics are jointly influenced by the slope distribution and reflectance of surface element.The random rough surface scattering light intensity distribution is affected by common influence of surface element slope distribution and surface element reflectivity of random surface,and good consistency between the common influence result and numerical calculation result.
作者 闫克丁
出处 《光散射学报》 北大核心 2017年第3期197-202,共6页 The Journal of Light Scattering
基金 西安工业大学科研创新团队建设计划项目
关键词 光散射 随机粗糙表面 Kirchhoff近似 蒙特卡洛 light scattering Random rough surface Kirchhoff approximation Monte Carlo
  • 相关文献

参考文献2

二级参考文献25

  • 1[2]Amersfoort M R. Passband broadening of integrated arrayed waveguide filters using multimode interference couplers. Electron Lett, 1996, 32 (5):449~451
  • 2[3]Lenz G,Eggleton B J. Dispersive properties of optical Filters for WDM systems. IEEE Journal of Quantum Electronics, 1998, 34(8):1390~1392
  • 3[4]Nykolak G, Lenz G. Impact of fiber grating dispersion on WDM system performance. OFC′98:TuA3
  • 4[5]Eggleton B J, Lenz G. Implications of fiber grating dispersion for WDM communication systems. IEEE Photon Technol Lett, 1997, 9(9)1403~1405
  • 5[6]Dowling E M,MacFarlane D L. Lightwave lattice filters for optically multiplexed communication systems. J Lightwave Technol, 1994,12(3):471~486
  • 6[7]Lenz G, Eggleton B J. Optimal dispersion of optical filters for WDM systems. IEEE Photonics Technology Letters, 1998,10(4):567~569
  • 7[8]Soole J B D,Scherer A, Leblanc H P,et.al. Monolithic InP/InGaAsP/InP grating spectrometer for the 1.48~1.56μm wavelength range. Appl Phys Lett, 1991,58(18):1949~1951
  • 8[9]Koteles E.Integrated planar waveguide demultiplexers for high density WDM application.SPIE Optical Engineering Press,Bellinghan USA,1999:3~32
  • 9[10]Hadley G. Multistep method for wide-angle beam propagation. J Optical Society of America, 1992,17(24): 1743~1745
  • 10[12]He J J, Delage A. Sources of crosstalk in grating based monolithically integrated waveguide demultiplexers. Proceedings of SPIE,1998,3491:593~598

共引文献2

同被引文献39

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部