摘要
A closed linear relation T in a Banach space X is called left(resp. right) Fredholm if it is upper(resp. lower) semi Fredholm and its range(resp. null space) is topologically complemented in X. We say that T is left(resp. right) Browder if it is left(resp. right)Fredholm and has a finite ascent(resp. descent). In this paper, we analyze the stability of the left(resp. right) Fredholm and the left(resp. right) Browder linear relations under commuting Riesz operator perturbations. Recent results of Zivkovic et al. to the case of bounded operators are covered.
A closed linear relation T in a Banach space X is called left(resp. right) Fredholm if it is upper(resp. lower) semi Fredholm and its range(resp. null space) is topologically complemented in X. We say that T is left(resp. right) Browder if it is left(resp. right)Fredholm and has a finite ascent(resp. descent). In this paper, we analyze the stability of the left(resp. right) Fredholm and the left(resp. right) Browder linear relations under commuting Riesz operator perturbations. Recent results of Zivkovic et al. to the case of bounded operators are covered.
基金
Supported by MICINN(Spain)Grant MTM201345643