期刊文献+

LEFT-RIGHT BROWDER LINEAR RELATIONS AND RIESZ PERTURBATIONS

LEFT-RIGHT BROWDER LINEAR RELATIONS AND RIESZ PERTURBATIONS
下载PDF
导出
摘要 A closed linear relation T in a Banach space X is called left(resp. right) Fredholm if it is upper(resp. lower) semi Fredholm and its range(resp. null space) is topologically complemented in X. We say that T is left(resp. right) Browder if it is left(resp. right)Fredholm and has a finite ascent(resp. descent). In this paper, we analyze the stability of the left(resp. right) Fredholm and the left(resp. right) Browder linear relations under commuting Riesz operator perturbations. Recent results of Zivkovic et al. to the case of bounded operators are covered. A closed linear relation T in a Banach space X is called left(resp. right) Fredholm if it is upper(resp. lower) semi Fredholm and its range(resp. null space) is topologically complemented in X. We say that T is left(resp. right) Browder if it is left(resp. right)Fredholm and has a finite ascent(resp. descent). In this paper, we analyze the stability of the left(resp. right) Fredholm and the left(resp. right) Browder linear relations under commuting Riesz operator perturbations. Recent results of Zivkovic et al. to the case of bounded operators are covered.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2017年第5期1437-1452,共16页 数学物理学报(B辑英文版)
基金 Supported by MICINN(Spain)Grant MTM201345643
关键词 left and right Fredholm linear relations left and right Browder linear relations Riesz perturbations left and right Fredholm linear relations left and right Browder linear relations Riesz perturbations
分类号 O [理学]
  • 相关文献

参考文献1

二级参考文献25

  • 1Favini, A., Yagi, A.: Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York, 1998.
  • 2Gromov, M.: Partial Differential Relations, Springer-Verlag, Berlin, 1986.
  • 3Agarwal, R. P., Meehan, M., O'Regan, D.: Fixed Point Theory and Applications, Cambridge University Press, Cambridge, 2001.
  • 4Gorniewicz, L.: Topological fixed Point Theory of Multiwlued Mappings, Kluwer, Dordrecht, 1999.
  • 5Grixti-Cheng, D.: The invariant subspace problem for linear relations on Hilbert spaces. J. Austr. Math. Anal. Appl., 5, 1-7 (2008).
  • 6Saveliev, P.: Lomonosov's invariant subspace theorem for multivalued linear operators. Proc. Amer. Math. Soc., 131(3), 825-834 (2003).
  • 7Baskakov, A. G., Chernyshov, K. I.: Spectral analysis of linear relations and degenerate operator semi- groups. Sbornik Math., 193(11), 1573-1610 (2002).
  • 8Alvarez, T., Cross, R. W., Wilcox, D.: Multivalued Fredholm type operators with abstract generalised inverses. J. Math. Anal. Appl., 261, 403-417 (2001).
  • 9Alvarez, T., Cross, R. W., Wilcox, D.: Quantities related to upper and lower semiFredholm type linear relations. Bull. Austr. Math. Soc., 66, 275-289 (2002).
  • 10Labrousse, J.-Ph., Sandovici, A., de Snoo, H. S. V., et al.: Quasi-Fredholm relations in Hilbert spaces. Stud. Cercet. Stiint. Set. Mat. Univ. Bacau, 16, 93-105 (2006).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部