期刊文献+

管式蒸馏海水淡化换热管强化技术发展探讨 被引量:2

Discussion on the Intensified Technology Development of Heat Exchange Tubes in Tubular Distillation Desalination
原文传递
导出
摘要 为进一步提高淡化效率,阐述了管式蒸馏海水淡化系统的基本热质传递机理,叙述了国内外通过优化管型、表面改性(亲水、疏水)等提高换热管热质传递性能的研究进展,并分析了上述方法应用在管式蒸馏海上淡化系统中的优缺点。认为在改变管型的基础上对其进行表面亲水、疏水处理,既可以很大程度提高系统整体的热质传递,还能够避免清洗困难和清洗周期短的现象。随着表面改性技术的不断完善,且与优化管型相结合,在管式蒸馏海水淡化领域必将会拥有良好的应用前景。 In order to further improve the desalination efficiency, the heat and mass transfer mechanism of desalination by tubular distillation system were described. The research progress of heat and mass transfer performance improvement in heat exchange tubes by tube type optimization and surface modification(hydrophilic/hydrophobic) at home and abroad were summarized, and the main advantages and disadvantages of the application of the above methods in the tubular distillation desalination system were analyzed. The heat and mass transfer would be improved significantly by surface modification such as hydrophilic/hydrophobic treatment based on tube type transformation, and would avoid the phenomenon like hardly cleaning and short cleaning period. With the constant improvement of the surface modification technology, and combined with optimization of tube type, it have good application prospects in the field of tubular distillation desalination.
出处 《水处理技术》 CAS CSCD 北大核心 2017年第10期7-10,15,共5页 Technology of Water Treatment
基金 国家自然科学青年基金项目(51106177) 重庆市重点自然科学基金项目(cstc2015jcyj BX0059)
关键词 海水淡化 管式蒸馏 强化传热 异型管 亲水 疏水 desalination tubular distillation heat transfer enhancement section tube hydrophilic hydrophobic
  • 相关文献

参考文献8

二级参考文献70

  • 1郭兆阳,徐鹏,王元华,徐宏,任彬,刘万鹏,杨宇清.表面强化管外池沸腾传热特性研究[J].热科学与技术,2012,11(3):201-206. 被引量:5
  • 2张亚君,李军,邓先和,李志武.几种强化传热管的流阻和传热性能[J].石油化工设备,2004,33(5):5-7. 被引量:19
  • 3帅志明,冯海仙,李学泰.螺旋槽管结垢试验研究[J].中国电机工程学报,1994,14(2):7-12. 被引量:17
  • 4刘振华,秋雨豪.超亲水表面上滞止区水喷流沸腾的临界热通量[J].化工学报,2005,56(12):2271-2275. 被引量:1
  • 5Feuillebois F, Bazant M Z, Vinogradova O I. Effective slip over superhydrophobic surfaces in thin channels. Physical Review Letters, 2009, 102 (2): 026001-4.
  • 6Truesdell R, Mammoli A, Vorobieff P, van Swol F, Brinker C J. Drag reduction on a patterned superhydrophobic surface. PhysicalReview Letters, 2006, 97 (4): 044504/1-4.
  • 7ChoiC H, Ulmanella U, Kim J, Ho C M, Kim C J. Effective slip and friction reduction in nanograted superhydrophobic microchannels. Physics of Fluids, 2006, 18 (8):087105.
  • 8Shirtelilfe N J, McHale G, Newton M I, Zhang Y. Superhydrophobie copper tubes with possible flow enhancement and drag reduction. ACS Applied Materials & Interfaces, 2009, 1 (6): 1316-1323.
  • 9Plawsky J, Ojha M, Chatterjee A, Wayner P. Review of the effects of surface topography, surface chemistry, and fluid physics on evaporation at the contact line. Chemical Engineering Communications, 2009, 196 (5): 658 -696.
  • 10Manglik R M, Jog M A. Molecular-to-large-scale heat transfer with multiphase interfaces: current status and new directions. Journal of Heat Transfer-Transactibns of the ASME, 2009, 131 (12): 12001 -1-12001- 11.

共引文献21

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部