期刊文献+

基于贝叶斯网络的网络信息安全态势评估 被引量:13

Network Space Combat Information Security Defense Situation Study Based on Dynamic Bayesian Network
原文传递
导出
摘要 网络空间中信息安全防御态势难以进行精确、自主、完整可控的评估,针对这种情况提出基于模糊动态贝叶斯网络的态势评估方法,对防御系统中的态势因素在不同时间的状态进行模糊和概率处理,构建了态势感知和态势估计模型,将初始条件概率、状态转移概率及观测数据输入建立的模型中进行仿真实验,将仿真结果与静态贝叶斯网络模型评估的结果进行对比,实验结果表明使用这种方法进行评估综合了更多态势要素间的反馈关系和观测信息,可以较好地反映网络空间作战信息安全防御态势动态变化的客观规律,做到精确快速、主动高效的评估。 In the network space, the information security defense situation is difficult to carry out the accurate, independent and complete controllable evaluation. Aiming at this situation, the situation evaluation method based on the fuzzy dynamic Bayesian network is proposed, and the fuzzy and probabilistic processing of the situation factors is taken in the defense system at different times, a model of situation perception and situation estimation is constructed, initial conditional probability, state transition probability and observation data are inputted into the established model to make simulation experiment. The experimental results show that by using this method, the feedback relation and the observation information of the more situation factors are synthesized, which can reflect the objective law about the dynamic change of the information security defense situation in the network space, so as to make the accurate, fast and efficient evaluation.
作者 杨颖 黄晓峰 YANG Ying HUANG Xiao-feng(Computer Department, Guangdong AIB Polytechnic College, Guangzhou 510507, China)
出处 《控制工程》 CSCD 北大核心 2017年第10期2177-2183,共7页 Control Engineering of China
关键词 贝叶斯网络 网络空间作战 信息安全 态势评估 Bayesian network network space operation information security situation assessment
  • 相关文献

参考文献6

二级参考文献62

  • 1王广彦,马志军,胡起伟.基于贝叶斯网络的故障树分析[J].系统工程理论与实践,2004,24(6):78-83. 被引量:98
  • 2陈健,孙冀辉,米双山.基于贝叶斯网络的装备部件战斗损伤研究[J].航空兵器,2005,12(4):6-9. 被引量:7
  • 3王润生,贾希胜,王卫国,王润泉.基于贝叶斯网络的损伤定位研究[J].兵工学报,2006,27(4):726-730. 被引量:17
  • 4彭征明,李云芝,罗小明.基于贝叶斯网的作战效能评估方法研究[J].装备指挥技术学院学报,2007,18(2):105-109. 被引量:14
  • 5Rfung B D Favero.Backward simulation in Bayesian networks[A]..R L De Mántaras,D Poole.Proceeding of the 10th Conference on Uncertainty in Artificial Intelligence[C].(San Mateo) Morgan &amp, Kauffman,2000.227-234.
  • 6Zhang N L, Poole D. A simple approach to Bayesian network computations[C].Proceedings of the Tenth Canadian Con ference on Artifieial Intelligence, 1994 : 171 - 178.
  • 7Dechter R. Bucket elimination: a unifying framework for probabilistic inference[C].Proceedings of the Twelthth Confer ence on Uncertainty in Artificial Intelligence, Portland, Oregon, 1996: 211-219.
  • 8Kask K, Dechter R, Larrosa J, et al. Bucket-tree elimination for automated reasoning [J]. Artificial Intelligence, 2001 (125): 91-131.
  • 9Zhang N L, Poole D. Exploiting causal independence in Bayesian network inference[J]. Journal of Artificial Intelligence Research, 1996(5) : 301 - 328.
  • 10Amestoy P R, Davis T A, Du I S. An approximate minimum degree ordering algorithm[J]. AIAM Journal of Matrix Analysis and Aplications, 1996, 17(4) : 886 - 905.

共引文献97

同被引文献133

引证文献13

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部