期刊文献+

小波去噪的灰色最小二乘支持向量机变形预测 被引量:8

Deformation forecast using grey least square support vector machine based on wavelet denoising
原文传递
导出
摘要 针对变形监测数据的随机性和非平稳性,以及单一预测模型的不足,该文提出了基于小波去噪的灰色最小二乘支持向量机变形预测模型。采用小波去噪对原始数据进行降噪处理,减弱数据随机扰动的影响,建立灰色最小二乘支持向量机模型,并采用粒子群算法寻找最优参数。通过大坝位移监测数据实例对模型进行验证,并与灰色模型、最小二乘支持向量机以及灰色最小二乘支持向量机进行对比分析。实验结果证明,该模型预测精度更高、稳定性更强。 Aiming at the randomness, non-stationary of deformation monitoring data and deficiency of single forecasting model, the model of a grey least square support vector machine based on wavelet denoising was presented in this paper. The wavelet denoising method was adapted to deal with the original data of deformation in order to weaken the effect of random disturbance factors. Then, the grey least square sup- port vector machine was established and the particle swarm optimization algorithm was used to find the op timal parameters. An example based on the measured data of a dam deformation was validated with this model. Grey model, least square support vector machine and grey least square support vector machine model were used to compare with the proposed model. The results proved that the presented model was more stable and the forecasting precision of the presented model was higher.
出处 《测绘科学》 CSCD 北大核心 2017年第10期134-137,160,共5页 Science of Surveying and Mapping
基金 国家自然科学基金项目(50604009) 辽宁省"百千万人才工程"人选资助项目(2010921099)
关键词 变形预测 小波去噪 灰色模型 最小二乘支持向量机 粒子群算法 deformation forecast wavelet denoising grey model least square support vector ma-chine particle swarm optimization
  • 相关文献

参考文献11

二级参考文献112

共引文献248

同被引文献92

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部