期刊文献+

基于层次结构化字典学习的人脸表情识别 被引量:2

Facial expression recognition based on hierarchy structured dictionary learning
下载PDF
导出
摘要 针对传统稀疏表示方法构建的字典不具备判别性的问题,以K-SVD算法为基础,对判别字典的构建和分类求解进行了研究,提出一种基于层次结构化字典学习的表情识别方法。先将训练样本切割出眼眉、脸颊和嘴三部分,对分割的各部分利用K-SVD算法得到块字典向量,再用层次分析法的权重赋值方法求块字典向量的权重值,构成各类子字典。将所有的子字典进行联合,用结构化字典学习算法求解。测试样本的归类取决于求解结果重构的效果。在JAFFE和CK表情库上的实验表明,该算法在保证了字典判别性的同时,也达到了较高的识别率。 Aiming at the constructed dictionary of traditional sparse representation method with not discrimination enough, this paper researched the construction and classification of discrimination dictionary based on K-SVD algorithm, and proposed a hierarchy structured dictionary learning method. It divided training samples into three parts, which were the eyes and eyebrows together, cheeks and mouth. It used K-SVD algorithm to obtain the block dictionary vectors for the divided three parts. It calculated the weight of block dictionary vectors by the weight assignment of AHP method, and then constructed sub-dictionary of each expression. At last, it combined all the constructed sub-dictionaries and used structured dictionary learning algorithm for solving. The classification of the test samples depended on the effect of the reconstruction. Experimental results show that the proposed method has guaranteed dictionary discrimination and also has a higher recognition rate by using JAFFE andCK database.
出处 《计算机应用研究》 CSCD 北大核心 2017年第11期3514-3517,共4页 Application Research of Computers
基金 广东省交通运输厅科技项目(科技-2016-02-030) 广东省自然科学基金博士启动项目(2014A030310169) 广东省自然科学基金面上项目(2016A030313703) 广东省自然科学基金资助项目(2016A030313713) 广东省科技计划资助项目(2016B030305002)
关键词 结构化字典 K-SVD算法 层次分析法 人脸表情识别 structured dictionary K-SVD algorithm analytic hierarchy process expression recognition
  • 相关文献

参考文献5

二级参考文献62

  • 1王宇博,艾海舟,武勃,黄畅.人脸表情的实时分类[J].计算机辅助设计与图形学学报,2005,17(6):1296-1301. 被引量:14
  • 2程剑,应自炉.基于二维主分量分析的面部表情识别[J].计算机工程与应用,2006,42(5):32-33. 被引量:9
  • 3刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 4Pantic M, Rothkrantz L J M. Automatic analysis of facial expressions: the state of the art [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (12) : 1424-1445
  • 5Bartlett M S, Littlewort G, Lainscsek C, et al. Machine learning methods for fully automatic recognition of facial expressions and facial actions [C] //Proceedings of the IEEE Conference on Systems, Man & Cybernetics, Hague, 2004: 592-597
  • 6Kotsia I, Pitas I. Facial expression recognition in image sequences using geometric deformation features and support vector machines [J]. IEEE Transactions on Image Processing, 2007, 16(1): 172-187
  • 7Zhang Y M, Ji Q. Active and dynamic information fusion for facial expression understanding from image sequences [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2005, 27(5): 699-714
  • 8Lisetti C I J, Schiano D J. Automatic facial expression interpretation: where human computer interaction, artificial intelligence and cognitive science intersect [J]. Pragmatics & Cognition, 2000, 8(1) : 185-235
  • 9Fasel B, Luttin J. Recognition of asymmetric facial action unit activities and intensities [C] //Proceedings of International Conference on Pattern Recognition, Barcelona, 2000, 1100-1103
  • 10Zhang H, Berg A C, Maire M, et al. SVM-KNN: discriminative nearest neighbor classification for visual category recognition [C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 2006:2126-2136

共引文献78

同被引文献6

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部