期刊文献+

基于文献的地质实体关系抽取方法研究 被引量:5

Study on geologic entity relation extraction method based on literature
下载PDF
导出
摘要 实体关系抽取是信息抽取的一项重要内容,通过实体关系的抽取能够发现文本中的有价值信息。本文在分析和比较了有监督、无监督、弱监督以及开放式等关系抽取方法的原理和特点的基础上,建立了基于文献的地质实体关系抽取模型:采用统计语言模型作为关系抽取方式、采用Bootstrapping算法作为关系扩展方式。最后据此进行了关联关系发现和关系扩展发现实验。 Relation extraction is an important section of information extraction,which play an crucial role in valuable information discovering.On the ground of analyzing and comparing,including supervised methods,unsupervised methods,self-supervise methods and open information extraction methods,this essay has built a Geologic Entity Relation Extraction Model,using statistical language models for relation extraction and bootstrapping models for relation extension.Finally,according to the above analysis,the experiment of incidence relation discovery and relation extension discovery were carried out.
出处 《中国矿业》 北大核心 2017年第10期167-172,共6页 China Mining Magazine
基金 国土资源部公益性行业科研专项项目资助(编号:201511079) 国家重点研发计划"基于‘地质云’平台的深部找矿知识挖掘"资助(编号:2016YFC0600510)
关键词 文献 关系抽取 统计语言模型 BOOTSTRAPPING literature relation extraction metallogenic prognosis statistical language model bootstrapping model
  • 相关文献

参考文献5

二级参考文献67

  • 1[1]APPELT D E,HOBBS J R.SRI International FASTUS System:MUC-6 Test Results and Analysis[C/OL]//Message Understanding Conference.Proceedings of the 6th Message Understanding Conference(MUC-6).Columbia,Maryland,1995.[2008-07-01].http://citeseerx.ist.psu.edu/vlewdoc/summary?doi=10.1.1.52.246.
  • 2[2]YANGARBER R,GRISHMAN R.NYU:Description of the Proteus/PET System as Used for MCU-7 ST[C/OL]//Message understanding Conference.Proceedings of the 6th Message Understanding Conference(MUC-7).Morgan Kaufman,1998.[2008-07-01].http://citeseerx.ist.psu.edu/viewdoc/summary?cid=268488.
  • 3[3]AONE C,RAMOS-SANTACRUZ M.Rees:A large-scale relation and event extraction system[C/OL]//Proceedings of the 6th Applied Natural Language Processing Conference,New York,2000.[2008-07-01].http://acl.ldc.upenn.edu/A/A00/A00-1011.pdf.
  • 4[4]ZHANG Zhu.Weakly-supervised relation classification for information extraction[C/OL]//Proceedings of the Thirteenth ACM conference on Information and knowledge management.Washington D.C,2004.[2008-07-01].http://portal.acm.org/citation.cfm?id=1051279.
  • 5[5]IRIA J.T-Rex:A Flexible Relation Extraction Framwork[C/OL]//Proceeding of the 8th Annual Colloquium for the UK Speclal interest Group for Computational Linguistics(CLUK'05).Manchester,January 2005.[2008-07-01].http://eprints.aktors.org/396/01/cluk05.pdf.
  • 6[6]IRIA J,CIEAVEGNA F.Relation Extraction for Mining the Semantic Web[C/OL]//Proceedings Machine Learning for the Semantic Web Dagstuhl Seminar 05071.Dagstuhl,DE,2005.[2008-07-01].http://eprints.pascal-nstwork.org/archive/00001957/01/dagstuhl.pdf.
  • 7[7]HONG GW.Relation Extraction Using Support Vector Machine[C/OL]//Second International Joint Conference,Jeju Island,Korea,2005.[2008-07-01].http://www.springerlink.com/content/bd654489albb1g6h/fulltext.pdf.
  • 8[8]VAPNIK V N.The nature of statistical learning theory[M/OL].New York:Springer-Verlag New York,Inc.,1995:138-139[2008-07-01].http://books.google.com/books?id=sna9BaxVbj8C & pg=PA243 & hl=zhCN & sig=ACfUSU2f-vGclLc0YGyal2hLHBSWwQeUyw & vq=%22the+convolution+of+two+function+is+equal+to+the+product+of+the+Foutier+transforms+of+these+two%22 & source=gbs_quotes_s & cad=2.
  • 9[9]SPECIA L,MOTTA E.A hybrid approach for extracting semantic relations from texts[C/OL]//Proceedings of the 2nd Workshop on Ontology Learning and Population.2006.[2008-07-01].http://www.dcs.shef.ac.uk/~lucia/publications/SpeciaMotta_OLP2-2006.pdf.
  • 10[10]ACE07,NIST 2007 Automatic Content Extraction Evaluation Official Results[EB/OL].(2007-04-02)[2007-07-01].http://www.nist.gov/speech/tests/ace/2007/doc/ace07_eval_official_results_20070402.html.

共引文献71

同被引文献65

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部