期刊文献+

带流体动力学阻尼的IBq方程的精确解 被引量:1

Exact Solutions for IBq Equation with Fluid Dynamic Damping
下载PDF
导出
摘要 对带流体动力学阻尼的IBq方程进行了研究,发现虽然对Bq方程精确解的研究很多,但对IBq方程解的研究结果却很少.介绍了求解非线性演化方程的Tanh法与扩展Tanh函数法,使用符号计算软件Maple和Tanh函数法获得带流体动力学阻尼的IBq方程的大量双曲函数精确解,主要为扭结和反扭结孤立子解.对精确解中未知参数进行赋值,图解表示了部分精确解,这对于数值解的准确性和稳定性的核对是有用的.获得的结果证实该方法用于分析求解数学物理中各种非线性偏微分方程是有效的. The IBq equation with fluid dynamic damping was studied. Many studies of exact solutions for Bq equation were found, but the study results of the IBq equations were very few. The standard Tanh method and the extended Tanh method were introduced to solve nonlinear evolution equation, and the standard Tanh method and symbolic computation system Maple were used to obtain a large number of exact hyperbolic function solutions of IBq equation with fluid dynamic damping,mainly for the kink and the antikink soliton solutions. Assignment of exact solutions was done for the unknown parameters, and figures showed some exact solutions, which were useful for verifying the accuracy and stability of numerical solution. The obtained results confirm that the proposed methods are efficient techniques for analytic treatment of a wide variety of nonlinear partial differential equations in mathematical physics.
作者 宋叔尼 范凯
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第10期1516-1520,共5页 Journal of Northeastern University(Natural Science)
基金 辽宁省自然科学基金资助项目(201602259)
关键词 TANH函数法 扩展Tanh函数法 双曲函数精确解 IBq方程 流体动力学阻尼 Tanh method extended Tanh method exact hyperbolic function solutions IBq equation fluid dynamic damping
  • 相关文献

参考文献3

二级参考文献38

  • 1D G Akmel. Global existence and decay for solution to the bad Boussinesq equation in two space dimensions, Appl Anal, 2004, 83: 17-36.
  • 2J Albert. On the decay of solutions of the generalized Benjamin-Bona-Mahony equation, J Math Anal Appl, 1989, 141: 527-537.
  • 3P Biler. Long time behavior of solutions of the generalized Benjami-Bona-Mahony equation in two space dimensions, Differential Integral Equations, 1992, 5: 891-901.
  • 4J Boussinesq. Theorie des ondes et des remous qui se propagent le long d'un canal rectangu- laire horizontal, en communiquant au liquide continu dans 21 ce canal des vitesses sensiblement pareilles de la surface au fond, J Math Pures Appl, 1872, 17: 55-108.
  • 5G Chen, S Wang. Existence and nonexistence of global solutions for the generalized IMBq equa- tions, Nonlinear Anal, 1999, 36: 961-980.
  • 6P Deift, C Tomei, E Trubowitz. Inverse scattering and the Boussinesq equation, Comm Pure Appl Math, 1982, 35: 567-628.
  • 7X Han, M Wang. General decay of energy for a viscoelastic equation with nonlinear damping, J Franklin Inst, 2010, 347: 806-817.
  • 8R S Johnson. A two dimensional Boussinesq equation for water waves and some of its solutions, J Fluid Mech, 1996, 323: 65-7"8.
  • 9I T Kato, G Ponce. Commutator estimates and the Euler and Navier Stokes equations, Comm Pure Appl Math, 1988, 41: 891-907.
  • 10M Lakshmanan. Nonlinear physics: Integrability, chaos and beyond, J Franklin Inst, 1997, 334: 909-969.

共引文献14

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部