摘要
考虑多标准分类问题,即条件属性具有偏好关系而决策属性是无序的类别,通过在条件属性上引入优势关系而决策属性仍然用等价关系来描述不同的属性.针对这类信息系统,本文提出了一种基于样例对的矩阵约简算法.区别于传统的基于辨识矩阵约简方法,该算法在不计算辨识矩阵的前提下,通过选择样例对,来找到辨识矩阵中对约简有用的属性,因此,所提算法能够明显改善计算约简的时间耗费.进一步,为了处理较大规模的数据,提出了一种近似约简算法,该算法按属性重要性添加属性到约简中,进一步缩短了求取约简的时间.最后在UCI数据集上进行大量的实验与传统的约简算法进行了对比,表明了所提出算法的可行性与有效性.
Considering multiple criteria classification problems, dominance relations and equivalence relations can be respectively introduced to condition attributes and decision attributes to describe different types of data. Based on the dominance-equivalence relations,a novel attribute reduction method based on sample pair selection is developed to deal with this kind of information systems. Instead of calculating the whole discernibility matrix, the proposed method only store the useful attributes for attribute reduction by selecting the discerned sample pairs, and therefore it can significantly improve the time costin attribute reduction. In addition,we propose an approximate reduction algorithm in order to deal with comparative large-scale information systems. This algorithm add attributes based on attribute importance and it 's time saving. Finally, the experimental results on UCI data sets demonstrate the feasibility and effectiveness of the proposed algorithms.
出处
《南京师大学报(自然科学版)》
CAS
CSCD
北大核心
2017年第3期45-51,共7页
Journal of Nanjing Normal University(Natural Science Edition)
基金
国家自然科学基金(61170040
61473111)
河北省自然科学基金(F2014201100
A2014201003)
关键词
粗糙集
优势-等价关系
属性约简
辨识矩阵
样例对
rough set,dominance-equivalence relation, attributes reduction, discernibility matrix, sample pair