期刊文献+

强相关子空间离群检测算法 被引量:3

Outlier detection algorithm based on strong correlation subspace
下载PDF
导出
摘要 介绍离群点的定义和传统的离群检测算法,针对传统离群检测算法无法适用于高维数据的问题,分析现有的基于子空间的高维数据离群检测算法的优缺点,给出一种基于强相关子空间的离群检测算法。使用信息熵和互信息发现强相关子空间,使用经典离群挖掘算法确定离群值。采用UCI数据集和人工数据集作为实验数据验证了该算法的可行性,仿真结果表明,该算法能够有效识别高维数据集中的离群点,精度高,耗时短。 The definition of outliers and traditional outlier detection algorithms were introduced,aiming at the problem that traditional algorithms are not suitable for high-dimensional data,the advantages and disadvantages of outlier detection methods of high-dimensional data based on subspace were analyzed,and a strong correlation subspace outlier detection algorithm was proposed.These strong correlation subspaces were found using entropy and mutual information.Outliers were distinguished from these subspaces using classical outlier detection techniques.The UCI data sets and synthetic data sets were used as the experimental data.Simulation results show that the proposed approach can identify outliers effectively in high-dimensional datasets and it has higher precision and consumes less time.
出处 《计算机工程与设计》 北大核心 2017年第10期2754-2758,共5页 Computer Engineering and Design
基金 国家青年科学基金项目(61602335)
关键词 高维数据 数据挖掘 离群检测 强相关子空间 互信息 high-dimensional data data mining outl ier detection strong correlation subspace mutual information
  • 相关文献

参考文献7

二级参考文献53

  • 1黄洪宇,林甲祥,陈崇成,樊明辉.离群数据挖掘综述[J].计算机应用研究,2006,23(8):8-13. 被引量:42
  • 2Fayyad U, Piatetsky-Shapiro G, Smyth P. From Data Mining to Knowledge Discovery in Databases [J]. AI Magasine, 1996,17 (3) :37- 54.
  • 3L S Tillett. Banks Mine Customer Data[J]. Internet Week, 2000(831 ) : 45-46.
  • 4M D Odom,R Sharda. A Neural Networks for Bankruptcy Prediction[C] //The proceedings of International Joint Conference on Neural Networks, 1990:163-168.
  • 5Chiu C & Tsai C. A Web Services-Based Collaborative Scheme for Credit Card Fraud Detection [C] //The Proceedings of IEEE International Conference on e-Technology, e-Commerce and e- Service, 2004.
  • 6Odri S V, Petrovacki D P, Krstonosic G A. Evolutional development of a multilevel neural network[J]. Neural Networks, 1993,6(4) :583-595.
  • 7Yao X, Liu Y. A new evolutionary system for evolving artificial neural networks[J]. IEEE. Tran. Neural Networks, 1997(8) : 694-713.
  • 8Barse E L, Kvarnstrom H, Jonsson K Combining fraud and intrusion detection-meeting new requirements[C]// Proc. Nordic Workshop. Secure IT systems. Ireland: Cork, 2000.
  • 9Barse E L, Kvamstrom H, Jonsson E. A synthetic fraud data generation methodology[C]// Lecture Notes in Computer Science, ICICS 2002, Laboratories for Information Technology, Singapore, Springer Verlag,2002.
  • 10Margare H Dunham. Data mining introductory and advanced topics[M]. Boston: Prentice Hall, 2003.

共引文献74

同被引文献16

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部