期刊文献+

基于稀疏表征时频分析方法的滚动轴承故障特征提取 被引量:1

Feature Extraction of Rolling Element Bearing Fault Signal Based on Sparse Representation Time-frequency Analysis
原文传递
导出
摘要 传统时频分析方法可以同时在时、频域反映滚动轴承的故障特征,然而故障信号中的噪声干扰会模糊故障特征在时频分布上的清晰表示。稀疏表征方法可以通过稀疏的原子来表达原始信号,其某些类型的原子在时频域上的聚集是其进行时频分析的良好特性。相比于STFT,基于稀疏原子重构的信号时频分布具有更好的分辨率;相比于WVD则避免了交叉干扰项的影响。提出基于稀疏表征时频分析方法的滚动轴承故障特征提取方法,通过仿真及实验验证所述方法相对于传统时频分析方法如STFT、WVD具有更清晰的时频特征提取效果。 The traditional time- frequency method can reflect the fault feature of rolling element bearing simultaneously. However, the noise contained in the fault signal will fuzzy the analysis results of traditional time- frequency methods. The sparse representation method can express the original signal by sparse atoms, and better time- frequency analysis result can be obtained with the gathering property of some atoms in time-frequency domain. The advantage of the sparse representation time-frequency analysis method over short time frequency transform (STFT) is the advantage of better resolution, and it avoids the influence of cross interference item compared with wigner vile distribution (WVD). The feature extraction method of rolling element bearing fault signal based on sparse representation time-frequency analysis is proposed in the paper, and simulation and experiment analysis results verify that better time-frequency results can be obtained over the STFT and WVD methods.
出处 《机械设计与研究》 CSCD 北大核心 2017年第5期107-109,114,共4页 Machine Design And Research
关键词 稀疏表征 时频分析 滚动轴承 特征提取 sparse representation time-frequency analysis rolling element bearing feature extraction
  • 相关文献

参考文献4

二级参考文献35

  • 1程军圣,于德介,杨宇.EMD方法在转子局部碰摩故障诊断中的应用[J].振动.测试与诊断,2006,26(1):24-27. 被引量:46
  • 2毕果,陈进,周福昌,何俊,李富才.调幅信号谱相关密度分析中白噪声影响的研究[J].振动与冲击,2006,25(2):75-78. 被引量:13
  • 3MING Y, CHEN J, DONG G M. Weak fault featureextraction of rolling bearing based on cyclic Wiener filterand envelope spectrum[J]. Mechanical System and SignalProcessing,2011, 25: 1773-1785.
  • 4QIU H, JAYL, LIN J? et al. Wavelet filter-based weaksignature detection method and its application on rollingbearing element bearing prognosdcs[J]. Journal of SoundandWjration, 2006,289: 1066-1090.
  • 5BIN G F, GAO J J, LI X J. Early fault diagnosis ofrotating machinery based on wavelet packets-empiricalmode decomposition feature extraction and neuralnetwoik[J]. Mechanical System and Signal Processing,2012,27: 696-711.
  • 6WALDEN A T_ Non-Gaussian reflectivity, entropy anddeconvolution[J]. Geophys, 1985,50(12): 2862-2888.
  • 7WIGGINS R A. Minimum entropy deconvolution,geophys[J]. Exploration,1978, 16: 21-35.
  • 8ANTONI J,BONNARDOT F, RAAD A. Cyclostationarymodeling of rotating machine vibration signals[J].Mechanical System and Signal Processings 2004, 18(6):1285-1314.
  • 9RANDALL R B, ANTONI J, CHOBSAARD S. Therelationship between spectral correlation and envelopewlysis in the diagnostics of beaiing faults and othercyclostationaiy machine signals[J]. Mechanical Systemsand Signal Processing, 2001,15(5): 945-962.
  • 10CAPDESSUS C, SIDAHMED M,LACOUME J L.Cyclostationary processes: Application in gear faults earlydiagnosis[J]. Mechanical Systems and Signal Processing,2000, 14: 371-385.

共引文献286

同被引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部