摘要
自适应逆控制将系统扰动消除和动态响应性能独立分开控制,其性能的优劣取决于系统对象、逆对象及逆控制器模型辨识精度的高低。文中提出用动态函数连接神经网络来实现自适应逆控制系统对象、逆对象的同时在线建模和逆控制器的离线建模,并将模型参数的辨识转化为空间参数寻优。针对混沌初始化对已收敛种群结构的破坏性,提出用变参数混沌粒子群优化算法对神经网络权值进行全局寻优,通过仿真实验可以看出基于动态函数连接神经网络的建模误差小,辨识精度高;与当前的参考模型自适应控制方法进行对比分析,所提方法能取得较好的扰动消除效果,并能使系统的跟踪响应性能得到提高,从而验证了方法的有效性、可行性。
Adaptive inverse control can eliminate the disturbance of the system and control the performance of dynamic response independently,and the performance of the adaptive inverse control system depends on the accuracy of the system object,the inverse object and the controller identification model.In this paper,the dynamic functional link neural network was proposed to realize the simultaneous on-line modeling of the adaptive inverse control system object and inverse object,and realize the off-line modeling of the controller,and the identification of model parameters was transformed into optimization of spatial parameters.Aiming at the destruction of convergent population structure by chaos initialization,this paper presented variable parameter chaotic particle swarm optimization algorithm to optimize the weights of the neural network.Through the simulation experiment,we can see that the modeling error based on the dynamic function link neural network is small and the identification accuracy based on the dynamic function link neural network is high.Compared with the current reference model adaptive control methods,the method in this paper can achieve better disturbance cancellation effect and improve the tracking response performance of the system,thus verifying the effectiveness and feasibility of the method.
出处
《计算机科学》
CSCD
北大核心
2017年第10期203-208,共6页
Computer Science
关键词
自适应逆控制
扰动消除
系统辨识
动态函数连接神经网络
变参数
混沌粒子群算法
Adaptive inverse cont rol, Disturbance el imination, System ident if ication, Dynamic function l ink neural net-work, Variable parameter,Chaos particle swarm optimization algorithm