期刊文献+

关于椭圆曲线y^2=px(x^2+2)的整点研究 被引量:4

Integral Points on Elliptic Curve y^2=px(x^2+2)
下载PDF
导出
摘要 目的针对数论和算术代数几何学的有趣问题——椭圆曲线整点的确定,研究椭圆曲线G:y^2=px(x^2+2)的整点。方法运用二次和四次Diophantine方程的性质。结果设s是正整数,则当素数p=8(18s^2-18s+1)(9s^2-9s+1)+3时,椭圆曲线G至多有1个正整数点;当p=32s^4+1时,椭圆曲线G仅有1个正整数点(x,y)=(8s^2,128s5+4s)。结论解决了椭圆曲线G的可解性问题。即对某些特殊的素数P,椭圆曲线G至多有1个正整数点。所获命题,提供了研究椭圆曲线整点问题的一个思路。 Objective For an interesting problem in number theory and arithmetic algebraic geometry——the determination of integral points on elliptic curve,the points on the elliptic curve G:y^2=px(x^2+2)are studied.Methods Using properties of quadratic and quartic Diophantine equations.Results Let s be positive integer.If pbe prime with p=8(18s^2-18s+1)(9s^2-9s+1)+3,then the elliptic curve G has at most one positive integral ponit;if p=32s^4+1,then the elliptic curve G has only one positive integral point(x,y)=(8s^2,128s5+4s).Conclusion The study proves the solvability of the elliptic curve G,that is the elliptic curve G has at most one positive integral point for some special prime p.The statements supply an idea to study the problem of integral points on elliptic curve.
出处 《河北北方学院学报(自然科学版)》 2017年第7期11-13,共3页 Journal of Hebei North University:Natural Science Edition
基金 江苏省教育科学"十二五"规划课题(D201301083) 云南省教育厅科研课题(2014Y462) 泰州学院教授基金项目(TZXY2015JBJJ002)
关键词 椭圆曲线 整数点 解数 上界 elliptic curve integral ponit number of positive integer solution upper bound
  • 相关文献

参考文献1

二级参考文献7

  • 1Cassels J. W. S., A diophantine equation, Glasgow Math. J., 1985, 27(1): 11-18.
  • 2Luca F., Walsh P. G., On a diophantine equation of Cassels, Glasgow Math. J., 2005, 47(2): 303-307.
  • 3Ljunggren W., Some remarks on the diophantine equations x^2 - Dy^4 = 1 and x^4 - Dy^2 = 1, J. London Math. Soc., 1996, 41(4): 542-544.
  • 4Walsh P. G., A note on a theorem of Ljunggrem and the diophantine equation x^2 - kxy^2 +y^4 = 1,4, Arch. Math. (Basel), 1999, 73(1): 119-125.
  • 5Petr K., Sur l'equation de Pell, Casopis Pest. Mat. Fys, 1927, 56(1): 57-66.
  • 6Luca F., Walsh P. G., Squares in Lucas sequences with diophantine applications, Acta Arith., 2001, 100(1): 47-62.
  • 7Ljunggren W., Ein Satz fiber die Diophantische Gleichung Ax^2 - By^4 = C (C = 1, 2, 4), Tolfte Skand. Mat., Lund, 1953, 188-194.

共引文献35

同被引文献30

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部