摘要
设自然数n≥3,RWn是有限链[n]上的正则保序且压缩奇异变换半群。对任意的r(1≤r≤n-1),记W(n,r)={α∈RWn:|Im(α)|≤r}为半群RWn的双边理想。通过对秩为r的元素和格林关系的分析,获得了半群W(n,r)的极大(正则)子半群的完全分类。
Let RWn be the semigroup of all regular order-preserving and compressing singular transformations on a finite-chain[n] if n≥3, and let W(n,r) ={α∈ RWn : |Im(α) | ≤r} be the two-sided ideal of the semigroup RWn for an arbitrary integer r accord with 1 ≤ r≤n - 1. By analyzing the elements of rank r and Green's relations, the classification of the maximal (regular) subsemigroup of the semigroup W(n, r) is completely obtained.
作者
罗永贵
LUO Yong-gui(School of Mathematics Science, Guizhou Normal University, Guiyang 550001, Guizhou, China)
出处
《山东大学学报(理学版)》
CAS
CSCD
北大核心
2017年第10期7-11,共5页
Journal of Shandong University(Natural Science)
基金
贵州省科学技术基金资助项目(黔科合LH字(2014)7056号)
关键词
保序
正则压缩
奇异变换半群
极大(正则)子半群
完全分类
order-preserving
regular compression
singular transformation semigroup
maximal (regular) subsemigroup
complete classification