期刊文献+

不同储藏温度下重结晶锥栗淀粉的回生动力学 被引量:1

Retrogradation Kinetics of Recrystallized Castanea henryi Starches at Different Storage Temperatures
下载PDF
导出
摘要 采用酶脱支-压热法复合处理制得重结晶锥栗淀粉,以相对结晶度(R_C)、低温熔融焓(ΔH_i)与玻璃化转变温度(T_g)为评价指标,研究了它们分别在4、25和4/25℃储藏过程中的回生动力学。结果表明:在不同储藏温度下,重结晶淀粉的R_C、ΔH_i随储藏时间延长而增加,而T_g则逐渐降低,且都在第11或14天达到平稳;在相同储藏时间里,不同储藏温度下重结晶淀粉的R_C、ΔH_i差别显著(以储藏在4℃的最高、25℃的最低),T_g的差别也比较显著(以储藏在25℃的最高、4℃的最低)。Avrami动力学分析表明,R_C、ΔH_i与T_g均可用于评价重结晶淀粉在储藏过程中的回生程度。 Recrystallized Castanea henryi starches were made by the recombination treatment between enzyme debranching and pressure heated. With relative crystallinity ( Rc ), low temperature melting enthalpy ( △Hi) and glass trasition temperature ( Tg ) as evaluation index, their retrogradation kinetics were studied during storage at 4,25 and 4/25℃, respectively. The results demonstrated that, at different storage temperatures, Rc and △Hi of recrystallized starches increased with the storage time, while Ts decreased. However, all of them reached constant after 11 or 14 days. In the same storage time,Rc and △Hi of recrystallized starches at different storage temperatures showed signifi- cant difference ( the highest at 4 ℃, the lowest in 25 ℃), and Tg had larger difference ( the highest at 25 ℃, the lowest in 4 ℃ ). Avrami kinetics analysis proved that Rc, △Hi and Ts can be used to evaluate the retrogradation degree of recrystallization starches during storage process.
作者 谢涛 李英
出处 《中国粮油学报》 EI CAS CSCD 北大核心 2017年第10期45-48,共4页 Journal of the Chinese Cereals and Oils Association
基金 湖南省长沙市科技计划重点项目(20156013)
关键词 重结晶锥栗淀粉 储藏温度 理化特性 回生动力学 recrystallized Castanea henryi starch, storage temperature, physicochemical properties, retrogradation kinetics
  • 相关文献

参考文献3

二级参考文献53

  • 1连喜军,张燕.不同老化工艺对甘薯回生抗性淀粉制备率的影响[J].粮食加工,2012,37(3):46-48. 被引量:2
  • 2Englyst H N, Kingman S M, Cummings J H. Classification and measurement of nutritionally important starch fractions [ J ]. European Journal of Clinical Nutrition, 1992, 46 ( 1 ) : 33 - 50.
  • 3Escarpa A, Gonzalez M C, Morales M D, et al. An approach to the influence of nutrients and other food constituents on resistant starch formation[J]. Food Chemistry, 1997, 60 (2) : 527 -532.
  • 4Englyst H N, Trowel H, Cumming J H. Dietary fiber and resistant starch [ J]. American Journal of Clinical Nutrition, 1987, 46(3): 873-874.
  • 5Shao Y Y, Tseng Y H. Rheological properties of rice amylase gels and their relationships to the structures of amylase and its subfractions[ J]. Food Chemistry, 2007, 103(5) : 1 324 -1 329.
  • 6Niba L L. Resistant starch: a potential functional food ingredient[ J]. Nutrition & Food Science, 2002, 32(2) : 62 -65.
  • 7Shin S I, Kim H J, Ha H J, et al. Effect of hydrothermal treatment on formation and structural characteristics of slowly digestible non-pasted granular sweet potato starch [ J]. Starch-Starke, 2005, 57 (2) : 421 - 430.
  • 8Lehmann U, Jacobasch G, Schmiedl D. Characterization of resistant starch type Ⅲ from banana (Musa acuminata) [ J]. Journal of Agricultural and Food Chemistry, 2002, 50 (18) : 5 236 - 5 240.
  • 9Zampa A, Silvi S, Fabiani R, et al. Effects of different digestible" carbohydrates on bile acid metabolism and SCFA production by human gut micro-flora grown in an in vitro semi-continuours culture[ J]. Anaerobe, 2004, 10 (1) : 19 -25.
  • 10Rideout T C, Liu Q, Wood P, et al. Nutrient utilization and intestinal fermentation are differentially affected by the consumption of resistant starch varieties and conventional fibres in pigs[ J ]. British Journal of Nutrition, 2008, 99 (5) : 984 - 992.

共引文献23

同被引文献17

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部