期刊文献+

认知无线电频谱感知估计时延的随机规划优化算法 被引量:2

Stochastic Approach Optimization Algorithm for Cognitive Radio Spectrum Sensing Estimation Delay Time
下载PDF
导出
摘要 为了提高认知无线电网络的频谱利用率,该文提出对认知无线网络频谱感知估计时间进行优化。如果频谱感知时间较长,一方面对信道参数的估计更准确,会减小对授权用户的干扰并提高认知用户的吞吐量;另一方面,数据传输时间相应缩短,使系统吞吐量减小,这时存在一个最优的感知时间使得系统吞吐量最大。该文认为子频段的信道状态信息服从指数分布,故提出随机规划的方法,对认知无线网络频谱感知估计时间进行优化运算。计算机仿真结果表明,该算法是切实有效的,具有一定的工程应用价值。 In order to improve the spectrum efficiency in the cognitive radio networks, the optimization algorithm of the spectrum sensing estimation time is presented. The longer sensing time will bring two aspects of the consequences. On the one hand, the channel parameters are estimated more accurate so as to reduce the interference to the authorized users and to improve the throughput of the cognitive users. On the other hand, it shortens the transmission time so as to decease the system throughput. In this time, it exists an optimal sensing time to maximize the throughput. It is considered that the channel state information of sub-bands is exponentially distributed, so a stochastic programming method is proposed to optimize the sensing time of the cognitive radio networks. The computer simulation results show that the algorithm is effective and has a certain engineering application value.
出处 《电子与信息学报》 EI CSCD 北大核心 2017年第11期2548-2555,共8页 Journal of Electronics & Information Technology
基金 浙江省科技计划公益技术应用研究项目(2017C31055) "电子科学与技术"浙江省一流学科A类资助~~
关键词 认知无线网络 频谱感知 随机规划 Cognitive radio networks Spectrum sensing Stochastic approach
  • 相关文献

参考文献4

二级参考文献48

  • 1MITOLA J and MAGUIRE G Q. Cognitive radio: making software radios more personal[J]. IEEE Personal Communications, 1999, 6(4): 13-18. doi: 10.1109/98.788210.
  • 2HATTAB G and IBNKAHALA M. Multiband spectrum access: great promises for future cognitive radio networks[J]. Proceedings of the IEEE, 2014, 102(3): 282-306. doi: 10.1109/ JPROC.2014.2303977.
  • 3HONG Xuemin, WANG Jing, WANG Chengxiang, et al. Cognitive radio in 5G: a perspective on energy-spectral efficiency trade-off[J]. IEEE Communications Magazine, 2014, 52(7): 46-53. doi: 10.1109/MCOM.2014.6852082.
  • 4LóPEZ-BENíTEZ M. Sensing-based spectrum awareness in cognitive radio: challenges and open research problems[C]. International Symposium on Communication Systems, Networks & Digital Signal Processing, Manchester, 2014: 459-464. doi: 10.1109/CSNDSP.2014.6923873.
  • 5ZHANG Rui, TENG Joonlim, LIANG Yingchang, et al. Multi-antenna based spectrum sensing for cognitive radios: a GLRT approach[J]. IEEE Transactions on Communications, 2010, 58(1): 84-88. doi: 10.1109/TCOMM.2010.01.080158.
  • 6TANDRA R and SAHAI A. SNR walls for signal detection[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1): 4-17. doi: 10.1109/JSTSP.2007.914879.
  • 7CHOPRA R, GHOSH D, and MEHRA D K. Spectrum sensing for cognitive radios based on space-time FRESH filtering[J]. IEEE Transactions on Wireless Communications, 2014, 13(7): 3903-3913. doi: 10.1109/TWC.2014.2314125.
  • 8ZENG Yonghong and LIANG Yingchang. Eigenvalue-based spectrum sensing algorithms for cognitive radio[J]. IEEE Transactions on Communications, 2009, 57(6): 1784-1793. doi: 10.1109/TCOMM.2009.06.070402.
  • 9LIU Chang and JIN Minglu. Maximum-minimum spatial spectrum detection for cognitive radio using parasitic antenna arrays[C]. IEEE/CIC International Conference on Communications, Shanghai, 2014: 365-369. doi: 10.1109/ ICCChina.2014.7008303.
  • 10LU W and TIRKKONEN O. Spectrum sensing with Gaussian approximated eigenvalue ratio based detection[C]. International Symposium on Wireless Communication Systems, York, 2010: 961-965. doi: 10.1109/ISWCS.2010. 5624271.

共引文献23

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部