期刊文献+

基于置信滤波的激光雷达多目标检测方法 被引量:2

Multi-target Detection Method of Laser Radar Based on Confidence Filtering
下载PDF
导出
摘要 针对激光雷达在复杂场景中检测多目标时所遇到的传感器本身数据抖动、目标相互遮挡导致目标检测准确率不高的问题,提出了一种基于置信滤波的多目标检测方法。本方法将Velodyne点云数据投影到地面,使用置信滤波方法将聚集区域边缘的不稳定栅格滤除,并将栅格分为动态与静态两类。最后使用改进的DBSCAN聚类算法,对动、静态栅格进行聚类处理,得出运动目标与静态目标。实验结果表明:该方法能够较大地提高对复杂场景下多目标的检测准确度,是一种高效的激光雷达多目标检测方法。 Aiming at the questions happened when laser radar detecting multi-target in the com- plex environment that the date of laser sensor itself jittered and the accuracy of the target detec- tion result caused by the mutual occlusion of the target is not high, a multi-target detection method based on the confidence filter is presented. The method projects the Velodyne point data to the ground, using the theory of the confidence filtering to filter the unstable grids in the edge of the point clusters, then dividing the grids into two types: dynamic and static. Fi- nally, an improved DBSCAN clustering algorithm is used to cluster the dynamic and static grids separately to obtain the dynamic target and the static target. The experiment results show that the proposed method can improve the detection accuracy of multi-targets under complex terrain scenes. It is an efficient laser radar-based multi-target detection method.
出处 《制导与引信》 2017年第2期25-29,共5页 Guidance & Fuze
基金 2016上海航天科技创新基金资助项目 2015航天支撑技术基金资助项目
关键词 置信滤波 DBSCAN算法 目标检测 confidence filtering DBSCAN algorithm target detection
  • 相关文献

参考文献3

二级参考文献21

  • 1刘高军,朱嬿.基于数据挖掘技术的建筑企业信用评价[J].中国矿业大学学报,2005,34(4):494-499. 被引量:21
  • 2CHEN M S, HAN J H, YU P S. Data mining: An overview from a database perspective [ J]. IEEE Transactions on Knowledge and Data Engineering, 1996, 8(6): 866 -883.
  • 3KAUFAN L, RPUSSEEUW P J. Finding groups in data: An introduction to cluster analysis [ M]. New York: John Wiley & Sons, 1990.
  • 4ESTER M, KRIEGEL H P, XU X W. Knowledge discovery in large SPATIAL database: Focusing techniques for efficient class identification [ C]//Proceedings of the 4th International Symposium on Advances in Spatial Databases, LNCS 951. London: Springer-Verlag, 1995:67-82.
  • 5ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial database with noise [ C]//KDD - 96: Proceedings of the 2nd International Conference on Knowledge Discovering and DataMining. Portland, Oregon: [ s. n.], 1996:226-231.
  • 6GUHA S, RASTOGI R, SHIM K. CURE: An efficient clustering algorithm for large databases [ C]// Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1998:73-84.
  • 7AGRAWAL R, GEHRKE J, GUNOPOLOS D, et al. Automatic subspace clustering of high dimensional data for data mining application [C]// Proceedings of the ACM SIGMOD International Conference on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001:331-340.
  • 8ALEXANDROS N, YANNIS T, YANNIS M. C2P: Clustering based on closest pairs [ C]//Proceedings of the 27th International Conference on Very Large Databases. Roma: Morgan Kaufmann Publishers, 2001:331-340.
  • 9ESTER M,KRIEGEL H,SANDER J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proc of the 1996 2nd Int'l Conf on Knowledge Discovery and Data Mining.Portland:AAAI Press,1996:226-231.
  • 10ESTER M,KRIEGEL H P,SANDER J,et al.Incremental clustering for mining in a data warehousing environment[C]// Proceedings of the Twenty-Fourth Very Large Data Bases(VLDB) Conference.New York:[s.n.],1998:323-333.

共引文献112

同被引文献15

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部