期刊文献+

一种基于并行聚类的温室天窗开度预测方法

Skylight Opening Degree Prediction Method Based on Parallel Clustering
原文传递
导出
摘要 为了处理大量分布式存储的农业环境数据,实现农业设施智能控制,基于内存计算框架Spark提出一种并行化的Dirichlet过程混合模型聚类方法,对农业环境及设施数据进行训练得到预测模型,执行对温室大棚天窗开度的预测任务。通过对比实验验证了模型预测的可行性,对预测正确率进行统计,并测试了所提出的并行化聚类的执行效率。实验结果表明,提出的方法具有较高的执行效率及准确性。 To process the massive distributed data and control the agricultural facilities intelligently, a parallel Dirichlet Process Mixture Model (DPMM) clustering method was proposed based on Spark. With this method, the prediction model of greenhouse skylight opening degree was obtained by training the agricultural environmental and facilities data. The model was used to predict the greenhouse skylight opening degree. Through several comparison experiments, both the feasibility and the efficiency of the proposed parallel clustering were verified, the prediction accuracy was calculated. The experimental results show that the proposed approach has higher efficiency and accuracy.
出处 《系统仿真学报》 CAS CSCD 北大核心 2017年第10期2459-2467,共9页 Journal of System Simulation
基金 上海市科委重点项目(14DZ1206302)
关键词 Dirichlet过程混合模型聚类 农业环境数据 天窗开度预测 SPARK DPMM agriculture environmental data skylight opening value prediction Spark
  • 相关文献

参考文献2

二级参考文献7

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部