期刊文献+

Spatiotemporal distribution model for zinc electrowinning process and its parameter estimation 被引量:1

Spatiotemporal distribution model for zinc electrowinning process and its parameter estimation
下载PDF
导出
摘要 This paper focuses on the distributed parameter modeling of the zinc electrowinning process(ZEWP)to reveal the spatiotemporal distribution of concentration of zinc ions(CZI)and sulfuric acid(CSA)in the electrolyte.Considering the inverse diffusion of such ions in the electrolyte,the dynamic distribution of ions is described by the axial dispersion model.A parameter estimation strategy based on orthogonal approximation has been proposed to estimate the unknown parameters in the process model.Different industrial data sets are used to test the effectiveness of the spatiotemporal distribution model and the proposed parameter estimation approach.The results demonstrate that the analytical model can effectively capture the trends of the electrolysis reaction in time and thus has the potential to implement further optimization and control in the ZEWP. This paper focuses on the distributed parameter modeling of the zinc electrowinning process(ZEWP)to reveal the spatiotemporal distribution of concentration of zinc ions(CZI)and sulfuric acid(CSA)in the electrolyte.Considering the inverse diffusion of such ions in the electrolyte,the dynamic distribution of ions is described by the axial dispersion model.A parameter estimation strategy based on orthogonal approximation has been proposed to estimate the unknown parameters in the process model.Different industrial data sets are used to test the effectiveness of the spatiotemporal distribution model and the proposed parameter estimation approach.The results demonstrate that the analytical model can effectively capture the trends of the electrolysis reaction in time and thus has the potential to implement further optimization and control in the ZEWP.
出处 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期1968-1976,共9页 中南大学学报(英文版)
基金 Project(61673400)supported by the National Natural Science Foundation of China Project(2015cx007)supported by the Innovation-driven Plan in Central South University,China Project(61321003)supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China Projects(61590921,61590923)supported by the Major Program of the National Natural Science Foundation of China
关键词 zinc electrowirming spatiotemporal distribution model parameter estimation orthogonal approximation 时空分布模型 参数估计方法 锌离子浓度 电积过程 过程建模 分布参数 模型描述 动态分布
  • 相关文献

参考文献5

二级参考文献91

  • 1常玉清,王小刚,王福利.基于多神经网络模型的软测量方法及应用[J].东北大学学报(自然科学版),2005,26(6):519-522. 被引量:13
  • 2石贤良,吴成富.基于MATLAB的最小二乘法参数辨识与仿真[J].微处理机,2005,26(6):44-46. 被引量:44
  • 3严爱军,柴天佑,岳恒.竖炉焙烧过程的多变量智能优化控制[J].自动化学报,2006,32(4):636-640. 被引量:20
  • 4吴俊霖,陈进兴.正交函数运算矩阵及其在微分方程之应用[D].台湾:国立成功大学电机资讯学院,2003.
  • 5Zhou X,Yu S Y,Yu J,et al. Temperature measurement and control system of large-scaled vertical quench furnace based on temperature field[ J]. Journal of Control Theory and Applications (JCTA), 2004,2(4) :401-405.
  • 6孙强 桂卫华 王雅琳.锌电解过程电流效率的模糊神经网络模型设计.系统仿真学报,2001,13(18):105-107.
  • 7Yang C H,Deconinck G, Li Y G. An optimal power - dispatching system using neural networks for the electrochemical process of zinc depending on varying prices of electricity [ J]. IEEE Transactions on Neural Networks,2002,13 ( 1 ) :229-236.
  • 8Kennedy J, Eberhart R. Particle swarm optimization [ C ]. Perth: Proceedings of IEEE International Conference on Neural Networks, 1995.
  • 9Gaing Z L. A particle swarm optimization approach for optimum design of PID cont roller in AVR system[J]. IEEE Transactions on Energy Conversion ,2004,19 ( 2 ) :384-391.
  • 10Scott A C,Pitblado R M,Barton G W. Experimental determination of the factors affecting zinc electrowinning efficiency[ J]. Journal of Applied Electrochemistry, 1988,18 : 120-127.

共引文献60

同被引文献17

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部