期刊文献+

Semi-linear Elliptic Equations on Graph

Semi-linear Elliptic Equations on Graph
原文传递
导出
摘要 Let G = (V,E) be a locally finite graph, Ω C V be a finite connected set, A be the graph Laplacian, and suppose that h : V →R is a function satisfying the coercive condition on Ω, namely there exists some constant δ〉 0 such that Ωu(-△+h)udμ≥δ Ω|u|^2dμ, u:VR. By the mountain-pass theorem of Ambrosette-Rabinowitz, we prove that for any p 〉 2, there exists a positive solution to -△μ+hu=|u|^p-2u in Ω. Using the same method, we prove similar results for the p-Laplacian equations. This partly improves recent results of Grigor'yan-Lin-Yang.
出处 《Journal of Partial Differential Equations》 CSCD 2017年第3期221-231,共11页 偏微分方程(英文版)
  • 相关文献

参考文献1

二级参考文献3

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部