期刊文献+

Solutions to a 3D Burgers Equation with Initial Discontinuity That Are Two Disjoint Spheres

Solutions to a 3D Burgers Equation with Initial Discontinuity That Are Two Disjoint Spheres
原文传递
导出
摘要 We study the singular structure of a kind of three dimensional non-selfsimilar global solutions and their interaction for quasilinear hyperbolic conservation laws. The initial discontinuity is two disjoint unit spheres and initial data just contain two different constant states, the global solutions and some new phenomena are discovered. We give the solutions in 0 〈 t 〈 T* and T* 〈 t, and at t = T*, the two basic shock waves and the constant state u_ are disappeared.Then, we find a new shock wave between two rarefaction by R-H condition. Finally, we show the limit of the solution when t→∞. A technique is proposed to construct the three dimensional shock wave without dimensional reduction or coordinate transformation.
出处 《Journal of Partial Differential Equations》 CSCD 2017年第3期232-253,共22页 偏微分方程(英文版)
  • 相关文献

参考文献4

二级参考文献18

  • 1杨小舟.MULTI-DIMENSIONAL RIEMANN PROBLEM OF SCALAR CONSERVATION LAW[J].Acta Mathematica Scientia,1999,19(2):190-200. 被引量:11
  • 2Xiao-zhou Yang.The Singular Structure of Non-selfsimilar Global Solutions of n Dimensional Burgers Equation[J].Acta Mathematicae Applicatae Sinica,2005,21(3):505-518. 被引量:7
  • 3Ciarlet,PG. The finite element method for elliptic problems . 1978
  • 4C.Johnson,Szepessy.On the convergence of a finite clement method of a nonlinear hyperbolic conservation law. Mathematics of Computation . 1987
  • 5D.Kr(o|¨)ner,M.Rokyta.Convergence of upwind finite volume schemes on unstructured grids for scalar conservation laws in two dimensions. SIAM Journal on Numerical Analysis . 1994
  • 6Cockbum B,Coquel F,Lefloch P.An error estimate for finite volume methods for multidimensional conservation laws. Math Comut . 1994
  • 7B. Cockburn,S. Hou,C. W. Shu.The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Mathematics of Computation . 1990
  • 8B. Cockburn,C. W. Shu.TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General Framework. Mathematics of Computation . 1989
  • 9R.J. DiPerna.Measure-valued solutions to conservation laws. Archive for Rational Mechanics and Analysis . 1985
  • 10T. J. R. Hughes,L. P. Franca,M. Mallet.A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Computational Methods in Applied Mathematics . 1986

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部