期刊文献+

EEMD和TFPF联合降噪法在齿轮故障诊断中的应用 被引量:13

Application of Combined TFPF and EEMD Denoising Method in Gear Fault Diagnosis
下载PDF
导出
摘要 为了消除噪声对齿轮传动系统故障特征提取的影响,提出了一种基于集成经验模态分解(ensemble empirical mode decomposition,简称EEMD)和时频峰值滤波(time-frequency peak filtering,简称TFPF)相结合的降噪方法。针对TFPF算法在窗长的选择方面受到限制的问题,采用了EEMD方法对其进行改进,使得信号在噪声压制和有效信号保真两方面得到权衡;含噪声的信号经过EEMD分解后,得到一系列频率成分从高到低的本征模态函数(intrinsic mode functions,简称IMFs),计算出各IMFs间的相关系数,判断需要滤波的IMFs。对不同的IMFs选择不同的窗长进行TFPF滤波,把过滤后的IMFs和剩余的IMFs重构得到最终的降噪信号。用模拟仿真信号和齿轮齿根故障信号对该方法进行验证,可见EEMD+TFPF能有效地去除噪声,成功提取齿根裂纹故障特征。 In order to eliminate the influence of noise on fault feature extraction in gear transmission system,a method based on timefrequency peak filtering(TFPF)and ensemble empirical mode decomposition(EEMD)noise reduction method combining is proposed.In view of the TFPF algorithm being restricted in the window length selection problem,the balance in two aspects of the signal noise suppression and signal fidelity is improved by using the EEMD method.When the noisy signal is decomposed by EEMD,a series of intrinsic mode function(IMFs)is obtained,which is arranged from high to low according to frequency components.Through calculating the correlation coefficient between IMFs,the IMFs needed to be filtered is determined.Then,a different window length is chosen to filter different IMFs by using TFPF.At last,a reconstructive signal can be obtained by combining the filtered IMFs and the residual IMFs.The denoising method is applied to simulation signals and measured vibration signals,and the results show that the EEMD+TFPF method can effectively extract crack fault feature from intensive background noise.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2017年第5期1011-1017,共7页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(50775157) 山西省基础研究资助项目(2012011012-1)
关键词 时频峰值滤波 集成经验模态分解 齿根裂纹 降噪 time-frequency peak filtering(TFPF) ensemble empirical mode decomposition(EEMD) gear root crack denoising
  • 相关文献

参考文献7

二级参考文献99

  • 1王春,彭东林.Hilbert-Huang变换及其在去噪方面的应用[J].仪器仪表学报,2004,25(z3):42-45. 被引量:33
  • 2李增芳,何勇,宋海燕.基于主成分分析和集成神经网络的发动机故障诊断模型研究[J].农业工程学报,2006,22(4):131-134. 被引量:24
  • 3杜巧连,张克华.基于自身振动信号的液压泵状态监测及故障诊断[J].农业工程学报,2007,23(4):120-123. 被引量:33
  • 4Boashash B,Mesbah M.Signal enhancenment by timefrequency peak filtering[J].IEEE Trans.Signal Process.2004,52(4).929-937.
  • 5Rankinea L,Mesbaha M,Boashasha B.IF estimation for multicomponent signals using image processing techniques in the time-frequency domain[J].Signal Processing,2007,870):1234-1250.
  • 6Hussain Z,Boashash B.Adaptive instantancous frequency-estimation of multicomponent FM signals using quadratic time-frequency distributions[J].IEEE Trans.Signal Proccss,2002,50(8):1866-187.
  • 7Liu Feng, Ruan Xiaoe. Wavelet-based diffusion ap- proaches for signal de-noising[J]. Signal Processing, 2007,87:1138-1146.
  • 8Rato R T, Ortigueira M D, Batista A G. On the HHT, its problems, and some solutions[J]. Mechani- cal Systems and Signal Processing, 2008, 22: 1374- 1394.
  • 9Wu Z H, Huang N E. Ensemble empirical mode de- composition: a noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009,1 (1) : 1-41.
  • 10Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for non- linear and non-stationary time series analysi[J]. Pro- ceedings of the Royal Society of London Series A- Mathematical Physical and Engineering Sciences, 1998,454:903-995.

共引文献197

同被引文献98

引证文献13

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部