期刊文献+

基于KPCA残差方向梯度的故障检测方法及应用 被引量:21

Fault detection method based on KPCA residual direction gradient and its application
下载PDF
导出
摘要 针对核主元分析(KPCA)在应用过程中非线性映射不存在原像、故障变量无法辨识、工程应用困难等问题,提出了一种改进的KPCA残差方向梯度故障检测方法。利用主元统计量和残差统计量的偏微分之间存在着相关性这一性质,对与主元统计量相关的格拉姆矩阵偏微分中间计算过程进行优化,提出一种新的KPCA残差方向梯度算法,在此基础上结合统计量形成系统故障检测的新方法。非线性系统仿真表明,改进的KPCA残差方向梯度法不仅具有较优的故障变量辨识能力,还极大地减小了计算量,缩短了计算时间。大型热力系统的应用进一步表明,无论对于单故障和多故障的情况,方法均具有较好的故障检测能力,并且不存在残差污染,易于工程实现。 Aiming at the fact that there is no preimage in nonlinear mapping and fault variable cannot be identified which result in that it is difficult for engineering application of kernel principle analysis,an improved KPCA residual direction gradient algorithm is proposed to overcome the above drawbacks in this paper. By use of the correlation between the partial differential of principle statistic and residual statistic,the gram matrix partial differential intermediate computation process is simplified and the KPCA residual direction gradient index is obtained,combined with residual statistic a new fault detection method is proposed. Nonlinear system simulation computation shows that improved KPCA residual direction gradient method has excellent capability of fault variable identification while computational complexity is greatly decreased and the calculation time is shortened. Furthermore,large-scale thermodynamic system application shows that the proposed method has better capability in fault detection whenever in case of single fault or multiple faults and there is no residual contamination while it is very suitable for engineering realization.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第10期2518-2524,共7页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(51176030) 南京工程学院引进人才科研启动基金(YKJ201445)项目资助
关键词 核主元分析 故障检测 方向梯度 故障变量辨识 残差污染 kernel principal component analysis ( KPCA ) fault detection direction gradient fault variable identification residual contamination
  • 相关文献

参考文献14

二级参考文献139

  • 1黄建明.贝叶斯网络在学生成绩预测中的应用[J].计算机科学,2012,39(S3):280-282. 被引量:30
  • 2邓晓刚,田学民.一种基于KPCA的非线性故障诊断方法[J].山东大学学报(工学版),2005,35(3):103-106. 被引量:27
  • 3付克昌,吴铁军.基于特征子空间的KPCA及其在故障检测与诊断中的应用[J].化工学报,2006,57(11):2664-2669. 被引量:19
  • 4刘爱伦,袁小艳,俞金寿.基于KPCA-SVC的复杂过程故障诊断[J].仪器仪表学报,2007,28(5):870-874. 被引量:16
  • 5VENKATASUBRAMANIAN V, RENGASWAMY R, YIN K, et al. A review of process fault detection and diagnosis part III: Process history based methods[J]. Com- puters and Chemical Engineering, 2003, 27(3): 327-346.
  • 6KANO M, NAGAO K, HASEBE S, et al. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem[J]. Computers and Chemical Engineering, 2002, 26:161-174.
  • 7LEE D S, PARK J M, VANROLLEGHEM P A. Adaptive multiscale principal component analysis for on-line monitoring of a sequencing batch reactor[J]. Journal of Biotechnology, 2005, 116(2): 19-210.
  • 8LEE J M, YOO C K, LEE I B. Fault detection of batch processes using multiway kernel principal component analysis[J]. Computers and Chemical Engineering, 2004, 28(9): 1837-1847.
  • 9SCHOLKOPF B, SMOLA A J, MULLER K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10: 1299-1319.
  • 10BAUDAT G, ANOUAR E CHOI S W, et al. Feature vector selection and projection using kernels[J]. Neurocomputing, 2003, 55(1-2):21-38.

共引文献118

同被引文献202

引证文献21

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部